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Abstract Constant interaction with a dynamic environ-
ment—from riding a bicycle to segmenting speech—
makes sensitivity to the sequential structure of the world
a fundamental dimension of information processing.
Accounts of sequence learning vary widely, with some
authors arguing that parsing and segmentation processes
are central, and others proposing that sequence learning
involves mere memorization. In this paper, we argue
that sequence knowledge is essentially statistical in nat-
ure, and that sequence learning involves simple asso-
ciative prediction mechanisms. We focus on a choice
reaction situation introduced by Lee (1997), in which
participants were exposed to material that follows a
single abstract rule, namely that stimuli are selected
randomly, but never appear more than once in a legal
sequence. Perhaps surprisingly, people can learn this rule
very well. Or can they? We offer a conceptual replication
of the original finding, but a very different interpretation
of the results, as well as simulation work that makes it
clear how highly abstract dimensions of the stimulus
material can in fact be learned based on elementary
associative mechanisms. We conclude that, when rele-
vant, memory is optimized to facilitate responding to
events that have not occurred recently, and that se-

quence learning in general always involves sensitivity to
repetition distance.

Introduction

While there is widespread agreement that each mental
state is necessarily caused by a neural state (this is the
basic principle that underlies the ongoing ‘‘search for the
neural correlates of consciousness’’ (see e.g., Frith,
Perry, & Lumer, 1999), the reverse claim that each
neural state necessarily has a phenomenal correlate is
unlikely to be true. Exploring cases where there are de-
monstrable changes in neural activity or in behavior
without concomitant changes in subjective experience is
what the study of implicit cognition is about. Under-
standing the mechanisms of implicit cognition thus en-
tails that a stand is taken on what it means to be
conscious. However, thinking about and conducting
research on consciousness is clearly hard: Nobody
agrees on exactly what it is that we are trying to un-
derstand; different, often competing theories exist; there
is continuing debate about how one should interpret the
increasingly abundant empirical evidence. The difficulty,
of course, comes from the fact that conscious experience
is a private phenomenon/process that depends on your
current state and on your history: your perception of a
toad will not be exactly the same as mine, and it will not
even be exactly the same for you today as it was yes-
terday. Furthermore, I do not have direct access to your
mental states, and, some would argue, neither do I have
perfect access to my own mental states (or if I do, I am
often likely to be mistaken in different ways, see e.g.,
Dennett, 1991; Nisbett & Wilson, 1977; Wegner, 2002).
What is it, then, that we can hope to explain? How are
we to proceed?

This assessment will strike many as overly grim, and
yet, after several years of thinking about these issues, we
do not see an easy way out. One solution is to adopt a
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thoroughly pragmatic approach to the relationships
between conscious and unconscious cognition: Focus on
the mechanisms now, worry about the difficult concep-
tual issues later. This is essentially the perspective we
adopt in this paper. However, it nevertheless remains
important to spell out our general perspective on the
larger issues, for fear of losing sight of what we are
ultimately trying to achieve. In this respect, it is worth
pointing out that the rather pessimistic tone of our
introductory comments stems not only from the now
familiar challenges that reconciling subjective and
objective approaches to the mind entails, but also from
the rather unrealistic expectations that renewed interest
in consciousness has triggered in the research commu-
nity. Somehow, deep down, we continue to expect that
there will be a single ‘‘aha’’ moment when an obscure
neuroscientist suddenly comes up with ‘‘the’’ explana-
tion for consciousness. Needless to say, this is not going
to happen: Functional accounts of consciousness that
take as a starting point that it is a single, static property
associated with some mental states are doomed to fail,
for consciousness is neither ‘‘a single thing’’ nor is it
static. Instead, consciousness refers to several, possibly
dissociable, aspects of information processing, and it is a
fundamentally dynamic, graded, process. This point is
worth emphasizing because for a long while, research on
implicit learning (or any other domain where evidence of
implicit cognition has been collected, such as subliminal
priming) has been characterized by similar lines of
thought: Learning is either implicit or explicit, con-
sciousness of some stimulus is necessarily all-or-none,
pure measures of implicit or explicit influences can be
devised, and so on.

Recently, Cleeremans and Jiménez (2002) introduced
a conceptual framework that attempts to acknowledge
the graded character of conscious experience as well as
the graded effects that learned knowledge can exert on
behavior (Cleeremans, forthcoming). The framework
takes as its starting points:

1. That the main function of consciousness is to make
flexible, adaptive control over behavior possible

2. That consciousness is best viewed as involving a
graded continuum expressed over properties if rep-
resentation

3. That learning is a mandatory process that always
accompanies information processing, and through
which our conscious representations of the world are
made to reflect those contents which are most in need
of control at some point in time

The framework takes its roots in connectionist (or more
generally, sub-symbolic) models of the mind (Rumelhart
& McClelland, 1986).

Decades of exploration of such models and of related
exemplar- and memory-based frameworks (e.g., Brooks,
1978; Hintzmann, 1986; Perruchet & Vinter, 2003) have
yielded a number of insights that are particularly re-
levant for the study of implicit learning (see Cleeremans,
forthcoming).

Chief among those is the notion that sensitivity to
some regularity does not necessarily imply that the
regularity itself is represented as an object of re-
presentation. We call this the ‘‘principle of emergent
representation’’ (Cleeremans, 1997, forthcoming) and it
simply means that it should not be concluded, from
observing sensitivity to some regularity in human par-
ticipants, that these participants possess propositional,
explicit, symbolic, and conscious knowledge of the reg-
ularity. The case is made most clear by the fact that
native speakers of a natural language are perfectly
capable of uttering grammatically correct expressions
without even coming close to possessing verbalizable
knowledge of the underlying grammar. Yet, some rep-
resentation of the underlying set of regularities must
nevertheless exist; it is just that this knowledge is not
accompanied by relevant meta-knowledge, and that it is
stored in a form that is not easily expressed. In other
words, observing rule-like behavior does not necessarily
imply that the subject’s knowledge is rule-based: A
system can act as though it were following a rule, yet
nothing like a rule is actually stored in the system’s
memory (see e.g., Hinton, 1986; Pacton, Perruchet,
Fayol, & Cleeremans, 2001; Redington & Chater, 1996).
Instead, and along with others (e.g., Shanks & John,
1994), we think that genuine rule-based knowledge is
necessarily conscious knowledge (see also Cleeremans &
Destrebecqz, in press).

What, then, makes a representation a good candi-
date for availability to conscious experience? Cleere-
mans and Jiménez (2002) suggested that this depends
in a graded manner on several properties of re-
presentations, namely their relative strength, their dis-
tinctiveness (i.e., whether they refer to specific
instances or to features shared by many exemplars;
roughly episodic versus semantic memory), and their
stability in time. Strong, stable, and distinctive repre-
sentations of some content are accessible in a manner
that weaker representations are not. Crucially, such
weak representations are nevertheless susceptible of
influencing behavior, for instance through priming ef-
fects emerging as a result of the involvement of several
such weak traces.

In this paper, we would like to illustrate the principle
of ‘‘emergent representation’’ in action once again,
through a reinterpretation of sequence learning data
initially reported by Lee (1997). We will show how Lee’s
conclusion that her data suggested unconscious knowl-
edge of a highly abstract rule can in fact be dismissed in
favor of an account that is entirely based on associative
learning mechanisms operating on exemplars. We show
how both human subjects and models can appear to act
as though they possess rule-based knowledge of the
material, yet neither subjects nor the models, of course,
are able to verbalize anything about the simple regu-
larity to which they are nevertheless sensitive. In the next
section, we briefly overview sequence learning situations,
upon which the experimental and simulation work we
describe in this paper is based.
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Sequence learning

Sequence learning is a fundamental process involved in
the many different cognitive skills required for successful
interaction with an intensely dynamic environment.
Among those skills, language is probably the most
complex, and the role that elementary associative se-
quence learning processes may play in its development
has recently begun to be explored anew. For instance,
Saffran, Newport, Aslin, and Barrueco (1997) showed
how incidental exposure to artificial language-like audi-
tory material (e.g., bupadapatubitutibu.... was sufficient to
enable participants to segment the continuous sequence
of sounds they had heard into artificial words (e.g.,
bupada, patubi, etc.) of which it consisted, as evidenced
by their performance in a subsequent recognition test.
Based on these data, Saffran et al. suggested that word
segmentation abilities develop based on mechanisms that
exploit the statistical regularities present in sequences of
events, such as the fact that the transitional probabilities
of successive syllables are higher within words than be-
tween words. Further studies (Saffran, Johnson, Aslin, &
Newport, 1999) showed that this statistical learning
ability was not uniquely tied to linguistic materials: Both
adults and 8-month-old infants were able to segment a
continuous non-linguistic auditory sequence (made up of
‘‘tone words’’). Interestingly, Saffran et al. rooted their
interpretation of such findings in the apparently remote
literature dedicated to implicit learning.

The connection is obvious as soon as we recognize that
language acquisition, like implicit learning (for reviews,
see Berry & Dienes, 1993; Cleeremans, Destrebecqz, &
Boyer, 1998), is likely to involve, at least in part, inci-
dental learning of complex information organized at
different levels. In particular, research on sequence
learning (see Clegg, DiGirolamo, & Keele, 1998, for an
overview) has, over the past decade or so, provided a
steady stream of relevant evidence suggesting that par-
ticipants exhibit detailed sensitivity to the sequential
structure through differences in their reaction times to
stimuli that are or are not predictable based on the tem-
poral context set by previous elements. In typical se-
quence-learning situations, participants are asked to react
to each element of sequentially structured and typically
visual sequences of events (Nissen & Bullemer, 1987).
Several variants of this basic paradigm exist. In rule-based
paradigms, sequences either conform or fail to conform
to an abstract rule that describes permissible transitions
between successive stimuli. Rule-based paradigms can in
turn involve either deterministic (Lewicki, Hill, & Bizot,
1988) or probabilistic rules, as when the stimulus material
is generated based on the output of finite-state grammars
(Cleeremans, 1993; Cleeremans & McClelland, 1991). By
contrast, in the more common simple repeating sequence
paradigm, a single sequence containing fixed regularities
is repeatedmany times to produce the training set (Nissen
& Bullemer, 1987; Reed & Johnson, 1994). Sequence
learning paradigms now constitute one of the main

experimental situations through which to explore the
mechanisms of implicit learning.

A perennial question in this context is to determine
exactly what people learn about when exposed to se-
quentially-structured stimulus material. Perhaps un-
surprisingly, it is often the case that different accounts
are partially or completely consistent with the data.
Consider for instance a sequence learning situation in
which the stimulus material consists of a simple repeat-
ing sequence such as ‘‘ABCDBA’’. When exposed to this
material in the context of a choice reaction situation,
participants could:

1. Learn something about the generation rules (the
‘‘abstractionist’’ position, see e.g., Reber, 1967)

2. Memorize the entire sequence (Brooks, 1978)
3. Become sensitive to the frequency of specific repeat-

ing fragments of the sequence (Perruchet & Gallego,
1997; Servan-Schreiber & Anderson, 1990)

4. Learn something about the conditional probability of
occurrence of each element in the context of the
previous elements (Cleeremans & McClelland, 1991;
Jiménez, Mendez, & Cleeremans, 1996)

5. Learn about other aspects of the material such as
specific motor patterns (e.g., alternations, trills, or
more abstract patterns; see Koch & Hoffmann, 2000)
or repetition distance between successive occurrences
of the same stimulus (Dominey, Lelekov, Ventre-
Dominey, & Jeannerod, 1998)

Cleeremans and Jiménez (1998) suggested that these
different accounts may in fact turn out to be descriptively
equivalent, and concluded that the core processes in-
volved in sequence learning are best thought of as in-
volving elementary associative learning processes that
result in a progressively developing sensitivity to the
statistical constraints contained in the material (see also
Stadler, 1992). Such processes are well instantiated by
connectionist models such as the Simple Recurrent Net-
work (Cleeremans & McClelland, 1991; Elman, 1990).

In this context, Lee (1997) described an interesting
sequence learning situation which, at first sight, seems to
challenge traditional accounts of sequence learning. In-
deed, Lee’s material consisted of a random selection of
the 720 (6!) sequences of six elements that are consistent
with the following simple constraint: Each of the six
different elements can only appear once in each six-ele-
ment sequence. For instance, the sequences ‘‘123456’’ or
‘‘236145’’ are both legal because each stimulus appears
only once. The sequence ‘‘235451’’, however, does not
follow the rule because element ‘5’ appears twice and
element ‘6’ is missing. This rule thus results in a prob-
ability gradient across the six positions within each se-
quence, such that the first element of any legal sequence
is always completely unpredictable, and such that the
subsequent elements become increasingly predictable
based on the context set by the previous elements. The
final element of each legal sequence is thus always
completely predictable based on the first five elements.
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Lee’s material therefore contains almost no structure but
for the single highly abstract structural property de-
scribed by the generation rule. Nevertheless, Lee showed
that participants trained in this material tend to respond
faster to stimuli that occur in serial position 6 than to
stimuli that appear in serial position 1, thereby indicat-
ing that they had learned something about the structure
of the material. Of course, participants ignored the
existence of the six-element cycles and nothing marked
the beginning or end of the sequences.

As Lee indicated, traditional theories of sequence
learning (such as those listed above) may have a hard
time accounting for the data. Indeed, theories that
assume instance memorization would have difficulty in
this case because the material simply fails to contain
repeated instances. Fragment-based accounts appear
likewise implausible because even three-element
fragments fail to convey much information about the
relevant regularities (but see below). For instance, the
fragment ‘‘123’’ may end in any of the six serial positions
and be followed by any of the six possible elements but
‘‘3’’ (stimulus repetitions were forbidden). No salient
patterns are detectable in the material. Lee concluded
that ‘‘both parsing and short-term memory mechanisms
must be involved’’ (p. 428), and that models based on
simple associative learning mechanisms, such as the
simple recurrent network (SRN), were probably inca-
pable of learning this stimulus material.

We present two experiments and accompanying sim-
ulations in the rest of this article. Experiment 1 was first
described in Boyer, Destrebecqz, and Cleeremans (1998).
Here, we report on additional analyses and show that
participants’ sensitivity to the rule used to generate the
material can actually be understood based on the oper-
ation of elementary associative mechanisms that do not
involve parsing of any kind. We also challenge the idea
that any learning is involved in this situation, and suggest
instead that the structure of the material merely rein-
forces existing ‘‘negative recency’’ biases (Jarvik, 1951).

In the second experiment, we suggest, through new
empirical and simulation work, that both Lee’s and
Boyer et al.’s data can be accounted for based on a
preexisting tendency to prepare responses to stimuli that
have not occurred recently, and further speculate that
this bias may result from continuously reinforced pre-
experimental exposure to environmental regularities for
which negative recency has predictive value.

Experiment 1

Method

Participants

Twelve participants aged 18–24, all undergraduate stu-
dents in the Psychology Department of the Université
Libre de Bruxelles, took part in the experiment. They
were paid a fee of about $14 and could earn an addi-

tional bonus of up to $9 based on performance of the
task (see below).

Apparatus and display

The experiment was run on Macintosh computers. The
display consisted of six dots arranged in a horizontal line
on the computer’s screen and separated by intervals of
3 cm. Each screen position corresponded to a key on the
computer’s keyboard. The stimulus was a small black
circle 0.35 cm in diameter that appeared on a white
background, centered 1 cm below one of the six dots.

Procedure

Participants were exposed to 24 blocks of a six-choice
reaction time (RT) task. Each block consisted of 180
trials, for a total of 4,320 trials. In each trial, a stimulus
appeared in one of the six positions, and participants
responded as fast and as accurately as possible by
pressing the corresponding key. The target was removed
as soon as a key had been pressed, and the next stimulus
appeared after a 120-ms interval. Erroneous responses
were signaled by means of a tone. Participants were ex-
posed to two practice blocks of 18 trials each before the
onset of the experiment. Short rest breaks occurred be-
tween any two experimental blocks. During these breaks,
participants were informed about their performance and
bonus money earned so far. This amount was computed
for each block based on both accuracy and speed. A
longer rest break occurred after 12 experimental blocks.

Stimulus material

The stimulus set consisted of the 720 (6!) sequences of six
elements that were consistent with the following simple
constraint: Each element could only appear once in each
sequence. Each of the 24 training blocks was produced
by randomly selecting (without replacement) 30 legal
sequences and by concatenating them in random order
with the only constraint that the last element of any
sequence could not be identical to the first element of the
next sequence. The boundaries between sequences of six
elements were not marked. Each participant was ex-
posed to a different random order of the 24 training
blocks. To control for finger and hand effects, sequence
elements were assigned to different response keys in a
6·6 Latin square design, so that each sequence element
was assigned to each key exactly once. Each of the six
mappings was then used for two participants.

Results

Reaction time performance

Outliers (RTs above or below two standard deviations
from the mean) and incorrect responses were discarded
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from subsequent analyses and represented 10.6% of all
responses. To assess whether participants were sensitive
to sequential structure, we first examined whether RTs
reflected the serial position effect described by Lee
(1997). Recall that the stimulus material was such that
stimuli appearing as the first element of a sequence were
completely random according to the generation rules,
and that stimuli appearing in subsequent serial positions
were increasingly predictable, up to serial position 6,
where the stimulus was completely determined.

Figure 1a shows average RTs over the entire experi-
ment, plotted separately for each serial position. We
replicate Lee’s original finding: The figure makes it clear
that participants’ responses are strongly influenced by
serial position within each sequence. Indeed, RTs de-
crease linearly from the first to the sixth serial position,
with a difference of about 30 ms between the first and
last positions. These impressions were confirmed by a
two-way ANOVA with Block (24 levels) and Serial Po-
sition (six levels) as repeated measures factors, which
revealed a significant main effect of Block, F(23,
253) = 48.14, p < .0001, MSE = 2,997.7, and of Serial
Position, F(5, 55) = 22.26, p < .0001, MSE =
1,554.3—significant linear tendency was obtained,
F(1, 11) = 29.85, p < .001. The interaction also
reached significance, F(115, 1,265) = 1.26, p < .05,
MSE = 754.4, albeit more detailed analyses (see below)
do not confirm that this interaction should be taken as
evidence of learning.

Learning

Figure 1b shows how the serial position effect described
above changes over training. It is clear that the effect is
already present early on, and that the slope of the curves
corresponding to different moments during training does
not appear to changemuch.AnANOVAwithBlock (four
levels) and Serial Position (six levels) on this aggregate
data again produced a significant interaction between
Blocks and Position, F(15, 165) = 1.77, p < .05, MSE=
185.3. However, this significant interaction offers little
evidence of learning. Indeed, planned comparisons
showed that the difference betweenRTs to positions 1 and
6 stimuli (30 ms) is already significant over the first two
blocks, F(1, 11) = 16.87, p < .001, MSE = 309.5, and
that it stays relatively constant up until the last two
blocks, duringwhich it averages 41 ms,F(1, 11) = 23.56,
p < .001, MSE = 443.74). In short, there is in fact little
evidence of any learning in this situation, short of
unspecific practice effects: The serial position effect
emerges very early in training and remains quite constant
over the entire experiment.

Finally, participants were also asked questions about
whether they had noticed anything about the structure
of the stimulus material. All participants indicated that
they thought that the stimulus material was completely
random and none noticed lag structure. Admittedly,
these are qualitative data at best, but in this case, the fact
that none of the participants (throughout this and other

Fig. 1 The position effect.
a Mean reaction times as a
function of serial position over
the entire experiment. b Mean
reaction times as a function of
serial position, plotted
separately for blocks 1–6, 7–12,
13–18, and 19–24. c Mean
simple recurrent network
(SRN) responses as a function
of serial position over the entire
experiment. d Both human
subjects and the SRN model
exhibit a linear serial position
effect.
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experiments) volunteered anything at all when asked
about the material’s structure convinced us that there is
little doubt that participants indeed have very little or no
introspective awareness of the structure contained in the
material. Note also that the very nature of the material
makes it rather challenging to devise effective tests of
awareness in this situation. It is unclear, for instance,
which sequences could be contrasted in the context of a
recognition task, or what we would look for in genera-
tion data as evidence of participants’ ability to success-
fully deploy learned knowledge in a direct test.

Discussion

Taken at face value, the data we obtained seem to
confirm that participants are able to somehow segment
the stimulus material in chunks of six elements—the

finding that prompted Lee to conclude that parsing
mechanisms are involved. However, and somewhat
surprisingly, our data also indicate that participants
appeared to be sensitive to sequential structure right
from the beginning of the experiment. A re-examination
of Lee’s results likewise seems to suggest that the serial
position effect is already present very early during
training. In the following, we will show that parsing
mechanisms of any kind turn out to be unnecessary to
account for performance, and suggest an account of
how participants’ sensitivity to the sequential structure
may in fact develop before they are first exposed to the
task.

Lee’s analysis rests on the assumption that it is nec-
essary for participants to encode the serial position for
them to exhibit faster RTs to serial position 6 stimuli
than to other positions, and therefore to somehow parse
the material in successive chunks of six elements with the

Fig. 2 a Distribution of lags of
lengths 1–10 between successive
occurrences of the same
stimulus plotted as a function of
serial position (Experiment 1).
b Mean reaction times plotted
separately for stimuli associated
with lags 1–10, as a function of
serial position. c Mean SRN
responses plotted separately for
stimuli associated with lags
1–10, as a function of serial
position. d Mean simple
condensator model (SCM)
responses plotted separately for
stimuli associated with lags
1–10, as a function of serial
position

388



correct boundaries. This, however, need not be the case:
Participants in fact merely need to be sensitive to the lag
that separates two occurrences of the same stimulus, and
to produce faster responses to stimuli associated with a
long lag.

To see this, consider the fact that any stimulus that
occurs in serial position 6, that is, as the final element
of an experimenter-generated sequence, is necessarily
associated with a lag of at least length 5, in that, by
construction, the same stimulus could not have oc-
curred within the same experimenter-generated se-
quence. In contrast, stimuli that occur in serial position
1 could have previously occurred as recently as two
trials ago (in the previous sequence), and thus be
associated with a lag of length 1. This state of affairs is
depicted in Fig. 2a, which clearly shows that the dif-
ferent serial positions are associated with ranges of lags
of increasing length. For instance, position 1 is asso-
ciated with lags of lengths 1–5, and position 6 with lags
of lengths 5–10. From this perspective, then, the posi-
tion effect described by Lee (1997) and replicated in
this experiment, merely emerges out of more elemen-
tary features of the material, namely that in each trial,
the probability of any stimulus increases linearly with
the lag that separates the current trial from the stim-
ulus’s previous occurrence, and that different serial
positions in the experimenter-generated sequences are,
by construction, associated with distributions of
increasing lags.

If our account is correct, then we should observe a lag
effect in the data. Figure 2b represents the data plotted
separately for each lag, and shows that position, by it-
self, seems to have little impact on performance. Indeed,
each curve (corresponding to stimuli with a given lag
length as in Fig. 2a) is relatively flat across serial posi-
tions. An ANOVA with Position (six levels) applied to
these data, and restricted to stimuli with a lag of length 5
(the only case where position and lag are completely
crossed) confirmed this impression and showed no sig-
nificant effect of position (p = .09). To further assess
the relative contribution of Position and Lag to perfor-
mance, we conducted a series a regression analyses on
the set of mean RTs obtained from crossing both factors
(see Fig. 3a). First, simple linear regressions with either
Position or Lag as predictors indicated that both factors
influence performance (Position: p < .01; r2 = .30; Lag:
p < .01; r2 = .64). Next, a stepwise analysis with Po-
sition entered at step 0 and Lag at step 1 showed that
adding Lag as a predictor significantly increased r2

(r2 Change = .34, p < .01). When the order of predic-
tors was reversed, however, r2 did not change signifi-
cantly (r2 Change = .00001, p > .05), thus confirming
that lag, rather than position, accounts for the distri-
bution of RTs in this experiment.

Hence, it should be clear that participants do not
need to, and in fact do not, parse the material in order to
exhibit the observed serial position effect. It would ap-
pear that sensitivity to the serial position, far from
indicating learning of an abstract rule, may in fact reflect

elementary knowledge that participants already possess
before being exposed to the task. This knowledge may
consist of a tendency to prepare for responses that have
not been used recently, in a way similar to the biases
involved in the well-known fact that spontaneously
generated random sequences are in fact much more
uniform (i.e., involve more alternations) than true ran-
dom distributions (see, e.g., Lopes, 1982; Rapoport &
Budescu, 1997; Wagenaar, 1972). How might this
knowledge be established? This is the issue on which we
focus in the rest of this paper. We first present two
models that are both equally capable of simulating the
empirical data, but that differ considerably in their
assumptions about how sensitivity to repetition distance
is achieved. Next, in Experiment 2, we present new
empirical and simulation results aimed specifically at
making it possible to contrast predictions based on each
model.

Simulation

A simple ‘‘condensator’’ model

A first hypothesis is that sensitivity to the lag that sep-
arates successive occurrences of the same event reflects
fundamental properties of the motor system or funda-
mental, hard-wired properties of the attentional system.
For instance, Dominey’s (1998) model of sequence
learning explicitly includes mechanisms that are directly
sensitive to repetition distance. To find out whether such
direct sensitivity was sufficient to account for the data,
we constructed a simple model (which we dubbed the
‘‘Simple Condensator Model’’; SCM) consisting of six
units, each corresponding to a given response. Each unit
is associated with an activation level ranging from .0 to
1.0. Units are initialized to activation values of .166 (1.0
divided by 6) to reflect the fact that there are six response
alternatives. When a stimulus is presented, the corre-
sponding response unit fires and its activation upon
firing is distributed equally among the other five units.
The summed activation of all units is therefore always
equal to 1.0. The RT is assumed to be inversely pro-
portional to the activation of the firing unit. During
processing, the activation of each unit will thus increase
with time up until the point when the corresponding
stimulus is presented. The dynamics of this simple
accumulate-and-fire model thus depend directly on
repetition distance, because at any point in time, the
most active unit always corresponds to the stimulus
associated with the longest lag. Note that this model
never learns anything about the stimulus material or its
sequential structure.

To find out how well this simple model fared in
accounting for the data, 12 models were each exposed to
the same stimulus series as experienced by each of the 12
human participants, and their responses recorded and
then averaged together. Incorrect human responses were
eliminated from the corresponding model’s data, and the
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models’ responses were subtracted from 1.0 prior to
averaging so as to make increases in activation com-
patible with decreases in RT. In the following, we will
simply call these transformed responses ‘‘SCM re-
sponses.’’

We assessed the model’s performance by conducting
the same analyses as for human participants. First,
Fig. 2c shows that the model’s responses correspond
almost perfectly with the actual distribution of lags
(Fig. 2a), and very closely with the distribution of RTs
(Fig. 2b). Second, regressions using Position and Lag as
predictors indicated significant effects in both cases
(respectively p < .01; r2 = .43, and p < .01; r2 = .97).
Figure 3b makes it clear that SCM responses decrease
linearly from the first to the tenth lag. Third, stepwise
analyses with Position (step 0) and Lag (step 1) indicated
that r2 is significantly increased by the addition of Lag
(r2 Change = .54, p < .01), whereas entering Position
on step 1 in the converse analysis failed to increase r2

(r2 Change = .0005, p > .05). Finally, the high corre-
lation between human and simulated performance (r =
.84; p < .05) confirmed that the model was successful in

accounting for the distribution of RTs, and hence that
sensitivity to the lag provides a very good account of the
serial position effect.

However, while this simple model provides a good
descriptive account of the data, it also takes it as a
starting point that participants are directly sensitive to
repetition distance. An important issue, however, is
whether we should regard this sensitivity as a hard-
wired bias, or whether this bias should itself better be
taken as the result of prior learning. In the following,
we suggest that sensitivity to repetition distance is a
bias that emerges as the result of life-long exposure to
sequences of environmental stimuli structured in a way
that is consistent with the material used in this exper-
iment. Events do not occur randomly. On the contrary,
they tend to repeat at different predictable intervals.
For instance, the probability of your having a meal is
close to zero if you have just had one, and subse-
quently increases monotonically with the time elapsed
since your last meal. The same situation is true for
myriads of real-world events, from daily, personal
events to the movements of planetary bodies. Any

Fig. 3 Simple linear regressions
for the Lag effect: Comparisons
between human and simulated
performance (Experiment 1).
a Mean reaction times. b SCM
responses. c SRN responses.
d Association between SRN
and SCM responses. The
network has learned to emulate
the SCM almost perfectly
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system that attempts to predict future events based on
past experience is likely to become sensitive to these
temporal regularities, precisely because repetition dis-
tance has predictive value in these contexts. Our sug-
gestion is thus that sensitivity to repetition distance is a
learned bias with which participants enter our experi-
ment, and that this bias itself emerges out of even more
elementary prediction-based associative learning mech-
anisms. To test these ideas, we explored whether the
data could also be explained by adaptive models such
as the SRN, which constitutes one of the best models
of sequence learning performance.

The simple recurrent network model

The SRN (see Fig. 4) uses back-propagation to learn to
predict the next element of a sequence based only on
the current element and on a representation of the
temporal context that the network has elaborated itself.
To do so, it uses information provided by so-called
context units which, at every step, contain a copy of
the network’s hidden unit activation vector at the
previous time step. Over training, the relative activation
of the output units representing each possible successor
come to approximate the optimal conditional proba-
bilities associated with their appearance in the current
context, and can thus be interpreted as representing
implicit preparation for the next element when the
network is used as a model of human sequence
learning performance. Previous work (Cleeremans,
1993; Cleeremans & McClelland, 1991) has shown that
the SRN accounts for about 80% of the variance in
similar tasks.

Simulation parameters and procedure

To assess how well the SRN could capture RT perfor-
mance in this experiment, we trained the model on the
same material as human participants. The network
consisted of 80 hidden units and local representations of
both the input and output pools (i.e., each unit

corresponded to one of the six stimuli)1. The network
was trained to predict each element of a continuous se-
quence of stimuli generated exactly as for human par-
ticipants. On each step, a stimulus was presented to the
network by setting the activation of the corresponding
input unit to 1.0. Activation was then allowed to spread
to the other units of the network, and the error between
its response and the actual successor of the current
stimulus was used to modify the connection weights,
using standard back-propagation. During training, the
activation of each output unit was recorded in every trial
and normalized according to Luce’s choice rule (Luce,
1963). For the purpose of comparing simulated and
observed responses, we assumed that the normalized
activations (i.e., strength) of the output units represent
response tendencies, and that there is a linear reduction
in RT proportional to the strength of the unit corre-
sponding to the correct response. The network’s re-
sponses were finally subtracted from 1.0 to make
increases in response strength compatible with reduction
in RT. In the following, we will simply call these trans-
formed responses ‘‘SRN responses.’’

The lag effect is emergent

We first conducted exploration of the parameter space
using the network illustrated in Fig. 4. We found that
the network was able to master the material perfectly,
but only after extensive training consisting of seven
presentations of the entire training set. Figure 5 provides
a more detailed view of the network’s performance as it
changes over training, and shows that the network be-
comes progressively able to predict which elements are
possible at each serial position (bottom row). For in-
stance, after seven epochs of training, the network per-
fectly predicts that ‘‘6’’ is the only possible successor of
‘‘12345.’’

As described in Servan-Schreiber, Cleeremans, and
McClelland (1991), the development of sequence
knowledge in the SRN involves gradually increasing
sensitivity to the sequential constraints contained in an
increasingly large and self-developed representation of
the temporal context defined by previous elements of the
sequence. Initially, the network learns to associate each
element with the distribution of its possible successors,
and essentially ignores the context information. In this
material, each element is associated with a unique dis-
tribution of successors because, by construction, an
element cannot be followed by itself. Hence, after one
epoch of training (see Fig. 5, top row), the network

Fig. 4 The simple recurrent network

1All networks involved dual connection weights as described in
Cleeremans and McClelland (1991). Slow and fast weights were
associated with learning rates of .04 and .45 respectively.
Momentum was .9, and the fast weights decayed at a rate of .4. For
each simulation study described in the text, twelve networks ini-
tialized with different random weights selected in the !.5–+.5
range were each trained in a total of 30,240 trials (720 se-
quences · 6 elements · 7 epochs), and their responses averaged
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tends to predict that all the elements except the stimulus
itself are possible successors. The patterns of activation
over its hidden units now represent these associations.
When fed back onto the context units, these patterns can
now be used by the network as representations of the
previous element, and it can then start basing its pre-
dictions on two elements. It is when the network uses
three previous elements that the material’s structure
starts conveying information about the lag that sepa-
rates occurrences of the same stimulus.

Consider for instance the fragment ‘‘123.’’ It can
never be followed by 3 by construction, but it is also
more often associated with ‘‘1’’ as a successor than it is
with ‘‘2,’’ regardless of the serial position at which it
ends. This is simply because there are more ways for
‘‘1231’’ to occur in the stimulus set than there are ways
for ‘‘1232’’ to occur. Indeed, whereas neither ‘‘1231’’ nor
‘‘1232’’ can occur within any legal sequence, ‘‘1231’’ can
span two legal sequences in three different ways (‘‘1-
231,’’ ‘‘12-31,’’ and ‘‘123-1’’), whereas ‘‘1232’’ can only
do so in two different ways (‘‘12-32,’’ and ‘‘123-2’’).
Hence, the lag effect emerges out of the network’s pre-
diction-based sensitivity to the statistical structure of the
material. Furthermore, this sensitivity to the lag is itself
the basis for the emerging serial position effect charac-
teristic of human performance. As Fig. 3d shows, the
network’s responses in fact come to correspond almost
exactly (r2 = .978, p < .001) to the responses produced

by the SCM described above. Over training, the network
has thus learned to emulate the SCM perfectly.

Simulating the human data

The simulation work described above—when considered
together with the fact that human participants do not
appear to learn much beyond unspecific practice
effects—suggests that sensitivity to repetition distance is
a learned bias that participants enter the experiment
with. To find out how well the SRN was able to account
for human performance, we therefore assumed that the
network had previously experienced stimulus material
containing predictive lag structure, and assessed how
well its responses captured human performance when
exposed to Lee’s material.

To do so, we pre-trained networks for six epochs on a
degraded version of Lee’s material. The degradation was
achieved by adding normally distributed random noise
(m = .0; s = .5) to the net input of each unit in the
network. The networks were then exposed to the mate-
rial of Experiment 1, and their performance assessed as
described above.

Simulation results

When exposed to the stimulus material after pre-training
as described above, the network is able to master the
training set almost perfectly, as illustrated in Fig. 1c,
and exhibits a comparable linear serial position effect
(Fig. 1d) confirmed by an effect of Position F(5, 55) =
4.19, p< .01, MSE = .0029 obtained from the ANOVA
with Block (24 levels) and Serial Position (six levels) as
repeated measures factors. Furthermore, Fig. 2c shows
that the network’s distribution of responses is remark-
ably similar to—and indeed almost identical with—the
actual distribution of lags over the six serial positions
within the stimulus material (compare Fig. 2a, c).
Regression analyses showed that Position, in itself, only
accounts for about 24% of the variance in the network’s
responses. (p < .01; r2 = .24). Lag, however, accounts
for about 80% of the variance (p < .01; r2 = .80), as

Fig. 5 SRN prediction responses upon presentation of each
element of the sequence ‘‘123456’’ (columns) at different points in
training (rows). Each box in the figure represents the activation of
each of the network’s six output units upon presentation of one of
the six possible stimuli. The figure shows that after only one epoch
of training (top row), the network fails to make discriminative
predictions (all of the six possible successors tend to be equally
activated). In contrast, after seven epochs of training (bottom row),
it can clearly be seen that the network has learned to strongly
inhibit those responses that would correspond to repetitions of a
recent response. For instance, when presented with stimulus ‘‘1,’’
the network predicts that all stimuli except stimulus ‘‘1’’ are likely
to occur in the next trial. When presented with ‘‘2’’ immediately
thereafter, it predicts that neither ‘‘1’’ nor ‘‘2’’ are likely to occur
next, and so on. This sensitivity to the material’s repetition
structure develops gradually (epochs 3–5) over training
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illustrated in Fig. 3c. When Position is entered at step 0
into the equation of a stepwise analysis, r2 increases
significantly with the addition of Lag at step 1
(r2 Changed = .59, p < .01). Conversely, when Lag
is entered first, r2 only increases very moderately
(r2 Changed = .028, p < .05), thereby again suggesting
that Position alone makes almost no contribution to
overall variance. Finally, the correlation between human
and SRN responses was .88 (p < .01).

Discussion

Our simulation work indicated that both the SRN and
the SCM are quite capable of accounting for the dis-
tribution of human responses. Both models suggest
that sensitivity to repetition distance is the key factor
influencing human responses. However, the two models
make very different assumptions about the origin of
sensitivity to repetition distance. The SCM assumes
that this sensitivity is hard-wired and not subject to
modification through experience, whereas the SRN
assumes that repetition distance is a learned, adaptive
bias. To contrast the two models and to determine
whether sensitivity to repetition distance depends on
predictive value or not, we conducted a second exper-
iment in which both human participants and models
were exposed to random material that fails to contain
prediction-relevant lag structure. With such sequential
material, stimuli cannot be predicted or anticipated
through lag structure. So, exposed to such material,
participants would not be sensitive to repetition
distance and their results would not indicate any lag
effect. As for models, the SCM would predict contin-
ued sensitivity to repetition distance, whereas predic-
tion-based learning models such as the SRN would
predict the extinction of lag effects.

Experiment 2

Experiment 2 followed exactly the same design as
Experiment 1, but involved pseudo-random stimulus
material. Twelve new participants aged 18–26 were paid
as in Experiment 1 to participate. The sequences of
stimuli (720 sequences of six elements) were chosen
randomly with the only constraints that runs of more
than two identical elements were forbidden and that the
maximum lag between two occurrences of the same
stimulus could be no larger than 202. Unlike Experiment
1’s material, the stimulus sequence used here fails to
contain any association between lag and serial position
because the stimuli occurring in each serial position
could now be associated with any lag. We chose to in-
crease the maximum lag between successive occurrences

of the same stimulus from 10 to 20 in Experiment 2 so as
to test the idea that mere sensitivity to the lag accounts
for the distribution of reaction times. Indeed, the SCM
would predict even better performance on stimuli asso-
ciated with lag 20 than on stimuli associated with lag 10.
On the other hand, since the material of Experiment 2 is
such that it fails to contain any prediction-relevant lag
structure, the SRN model is not expected to exhibit any
sensitivity to lag structure. Each participant received the
stimuli in a different random order.

Results and discussion

The results presented below were analyzed by simple
linear regressions based on the means obtained by
crossing Serial Position (six levels) and Lag (21 levels).
Errors and outliers were again eliminated and amounted
to 10.9% of the human data.

Figure 6a shows the human data. Each data point
represents the mean RT obtained for a specific combi-
nation of Lag and Position. The figure shows that unlike
Experiment 1, participants do not appear to be sensitive
to repetition distance when exposed to material for
which lag structure fails to be predictive. These impres-
sions were confirmed by a two-way ANOVA with Block
(24 levels) and Serial Position (six levels) as repeated
measures, which failed to reveal a significant effect of
position, F(5, 55) = 1.75, p > .05. Regression analyses
applied to the set of mean RTs obtained from crossing
the factors Lag (20 levels) and Serial Position (six levels)
likewise failed to reveal significant effects of either Lag
or Position (respectively p > .05, r2 = .006; p > .05,
r2 = .003).

Simulations

To find out about the extent to which either the SCM or
the SRN model may account for our results, we again
conducted simulations of our empirical data. Twelve
instances of both models were again exposed to the same
material, as described above. The SRN was pre-trained
for six epochs on a noisy version of the stimulus material
of Experiment 1, and subsequently exposed to the ran-
dom material.

SCM results

Figure 6b shows the results obtained for the SCM. A
two-way ANOVA with Block (24 levels) and Serial Po-
sition (six levels), as repeated measures was first applied
to SMC responses. Unlike human participants, we ob-
served a significant effect of serial position, F(5, 55) =
20.98, p < .0001, suggesting that the model continues to
exhibit sensitivity to repetition distance: Indeed, SCM
responses decreased linearly from the first to the sixth
serial positions. Figure 6b shows the results of regres-

2An error in the stimulus generation program resulted in one in-
stance of a stimulus associated with a lag of 21.
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sion analyses obtained for the SCM. A simple linear
regression conducted on these data with Lag as predic-
tor confirms this impression (p < .01, r2 = .96). In
contrast, the same analysis with Position as predictor
failed to reach significance (p > .05, r2 = .0004). This
was expected since the random material was constructed
to break down the association between lags and serial
position as SCM is built-in sensitivity of repetition dis-
tance whatever lag structure. These results therefore
indicate that the SCM cannot be taken as an adequate
model of human performance, for its continued sensi-
tivity to repetition distance is inconsistent with the hu-
man data.

SRN results

Figure 6c shows SRN performance. A simple regression
analysis conducted on these data showed that the net-
work, like human participants, fails to be sensitive to
Position (p > .05, r2 = .004). A similar analysis using
Lag as predictor was unexpectedly significant (p < .01,
r2 = .09), but it should be pointed out that the per-

centage of variance explained is very small (9%), unlike
that observed for the SCM (96%). This weak sensitivity
to repetition distance can be attributed to the residual
effects of the pre-training to which the SRN was ex-
posed. This idea is confirmed by the results of separate
simple linear regressions conducted either on the data
corresponding to lags 1–10 or on the data corresponding
to lags 11–21. While the first such analysis showed a
significant effect of lag (p < .01, r2 = .74), the second
indicated no effect (p > .05, r2 = .0006), thus con-
firming that the very weak continued sensitivity to rep-
etition distance exhibited by the model is a result of its
pre-training. While it cannot be excluded that a better
choice of parameters would further increase the contrast
between the two models, we did conduct extensive
‘‘manual’’ exploration of the parameter space and al-
most systematically always found the same pattern of
results.

The results of this second experiment thus confirmed
our expectations: When repetition distance no longer
has predictive value, both human participants and the
SRN fail to exhibit continued sensitivity to it, in contrast
to the inflexible SCM.

Fig. 6 Simple linear regressions
for the Lag effect: Comparisons
between human and simulated
performance (Experiment 2).
a Mean reaction times. b SCM
responses. c SRN responses
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General discussion

In this paper, we first suggested that the core mechanism
involved in sequence learning is statistical in nature, and
rooted in the development of distributed representations
of the temporal context acquired through elementary
associative learning processes that operate on exemplars.
We showed how such mechanisms are in fact sufficient to
understand how sensitivity to very abstract features of
the material, such as the serial position effect described
by Lee (1997), can emerge out of a sensitivity to more
elementary features of the material, such as the lag that
separates successive occurrences of the same stimulus.
Neither memory for previous specific elements nor
parsing mechanisms of any kind are in fact necessary to
understand human performance in this situation. More
surprisingly, perhaps, our results suggest that perfor-
mance in this experiment does not involve actual learn-
ing of the sequential regularities, but merely reflects
continued reinforcement of knowledge that participants
already possess before being exposed to the task. This is
not to say that no learning whatsoever occurs in this
situation. Indeed, we have suggested that this pre-
experimental knowledge—which amounts to a bias to
preferentially prepare responses that have not been
produced recently—is itself the result of learning,
achieved through the operation of continuously operat-
ing prediction mechanisms exposed to real-world con-
tingencies in which repetition distance has predictive
value. Furthermore, Experiment 2—in which the mate-
rial is such that the lag structure fails to be predic-
tive—shows that only an adaptive model (the SRN) is
able to account for human performance. This is turn
suggests that sensitivity to repetition distance depends
on continued reinforcement, as in Experiment 1. Hence
the SRN model does learn over the course of Experiment
1, but this learning appears limited to the reinforcement
of existing knowledge. In other words (and this will be
our main conclusion), it appears that performance in this
task might be more a matter of knowing without learn-
ing than a matter of learning without knowing.

Second, our findings suggest that phenomena such as
negative recency—the tendency to respond more effi-
ciently to stimuli that have not occurred recently
(Baddeley, 1966; Budescu, 1987; Jarvik, 1951; Lopes,
1982; Rapoport & Budescu, 1997; Wagenaar, 1972),
inhibition of return—which in its most basic form results
in a slowing of responses to recently attended visual
location (Klein, 2000; Lupiañez, Milliken, Solano,
Weaver, & Tipper, 2001; Posner & Cohen, 1984; Posner,
Rafal, Choate, & Vaughan, 1985; Taylor & Klein, 1998),
and the ‘‘gambler’s fallacy’’—the erroneous belief that
alternations should occur more frequently than repeti-
tions in random sequences of events (Anderson, 1960;
Edwards, 1961; Feldman, 1959; Keren & Lewis, 1994)
may all find their roots in real-world experience with
sequential structure characterized by the fact that re-
petition distance has predictive value.

Sensitivity to repetition distance (that is, negative
recency) is prima facie inconsistent with Anderson and
Schooler’s (1991) characterization of memory as a sys-
tem in which retrieval probability depends only on how
recently and on how frequently the corresponding traces
were needed. Negative recency findings instead suggest
that memory might also be optimized to facilitate
responding to events that have not occurred recently.
Nevertheless, we would like to suggest that memory, in
general, might be optimized to facilitate both the re-
trieval of recent and earlier traces, perhaps based on
differences in the time scale over which these traces oc-
cur. Our main suggestion is that the key to reconciling
these two seemingly incompatible computational objec-
tives is to consider the conditions in which positive and
negative recency each have predictive value. In other
words, memory continuously serves attention by
directing it towards the items that are most likely to
occur next. In most environments, these items will be
those that have been most recently experienced. In other
environments, however, these items will be ones that
have not occurred recently. In both cases, adaptive
responding is made possible by automatic encoding of
the predictive value of the lag that separates recurring
events. This illustrates another important principle of
information processing brought forward by connec-
tionist modeling, and which we discussed briefly in the
Introduction: The ‘‘principle of mandatory plasticity,’’
that is, the notion that learning occurs whenever infor-
mation processing takes place, whether subjects are
aware of learning or not.

We also suggested that negative recency effects are
rooted in the sort of elementary-based mechanisms that
characterize adaptive sequence learning models such as
the SRN. Indeed, our simulation work suggests that the
SRN learns, through exposure to environments in which
repetition distance has predictive value, to behave just as
though it were directly sensitive to repetition distance, as
with the SCM model. In other words, the SRN learns to
emulate the SCM over training. An important implica-
tion of this finding is that negative recency is likely to
play a role in any sequence learning situation. If this is
indeed the case, it would be important to assess its effects
on performance, particularly when such effects can be
confounded with other aspects of the material’s struc-
ture.

The simulation work we described is illustrative of
the power of elementary associative learning mecha-
nisms, and in this sense makes it clear how behavior can
be ‘‘rule-like’’ without necessarily being ‘‘rule-based’’:
An agent’s decisions can thus be influenced by the reg-
ularities shared by exemplars of a domain in such a
manner that these regularities are never tokened as
‘‘knowledge’’ by the agent, but instead remain implicit
(distributed) over the representations associated with
each exemplar. These regularities might further depend
on the functional similarity between exemplars rather
than on their physical similarity. In other words, the
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regularities may reflect abstract similarity relationships
between exemplars (McClelland & Plaut, 1999)—how
different exemplars can be processed together because
they are associated with the same class of re-
sponses—rather than on their physical similarity—the
number of features their input representations have in
common. In this case, these abstract relationships con-
sist of the association between the serial position at
which stimuli occur and the lag that separates each
occurrence of a particular stimulus from its previous
occurrence. While these associations can easily be de-
scribed by a simple rule, the current experiments provide
no evidence that participants (or networks, for that
matter) induce this rule. Yet, they behave as though they
had.

The rules versus similarity issue continues to be an
object of lively debate in various literature, ranging from
language acquisition (Marcus, Vijayan, Bandi Rao, &
Vishton, 1999) to categorization (Pothos, in press). It is
also an issue that has proven particularly challenging to
settle convincingly using laboratory settings, for it can
always be argued, for instance, that people would end up
developing rule-based knowledge if given enough time to
fully induce the corresponding rules. In this respect, re-
cent findings described by Pacton et al. (2001) are illu-
minating. Pacton et al. took it as a starting point that
rules are typically defined as being absolute: When a rule
applies, it does so regardless of the surface features with
which the stimulus is instantiated. Anderson (1993), for
instance, states that ‘‘abstraction refers to the generality
of production rules. Production rules do not require that
a specific stimulus be present; the rules will apply in any
stimulus condition that satisfies the pattern specification
of the condition’’ (p. 35, see also Manza & Reber, 1997;
Smith, Langston, & Nisbett, 1992). This definition
therefore predicts that, if a rule is at play, we should not
observe any loss of performance in a transfer situation in
which the surface features of the material are changed
between transfer and test. Pacton et al. (2001) applied
this logic to a natural situation—the learning of ortho-
graphic regularities by children between grades 1 and 5.
Over a series of empirical studies, Pacton et al. explored
children’s sensitivity to untaught—and hence presum-
ably implicit—regularities that can easily be described as
rules, such as the fact that vowels are never doubled in
French, or the fact that double consonants never occur
at the beginning or endings of words. Using carefully
controlled preference tasks, Pacton et al. were able to
show not only that sensitivity to such rules tended to
develop between grades 1 and 5, but also, and more
importantly, that this sensitivity transferred to instances
that never occur in French (i.e., some consonants are
never doubled in French).

While such transfer performance would be predicted
by rule-based approaches, it would also be expected, in
virtue of the fact that rules are defined to be absolute,
that this transfer should be perfect after several years of
exposure. The results, however, failed to confirm this
prediction: What was observed instead was that per-

formance on familiar and novel material exhibited a
‘‘transfer decrement’’ that remained stable across grade
levels. This persistence of transfer decrement, even after
several years of exposure to relevant material, clearly
suggests that rule abstraction does not occur in this
natural context. Just as importantly, simulations based
on the Simple Recurrent Network confirmed all aspects
of these data. Based on such findings, we would tend to
concur with Pothos (in press) that the rules vs. similarity
distinction is best viewed as a graded continuum—a
perspective that is fully consistent with the conceptual
framework introduced by Cleeremans and Jiménez
(2002).

In closing, it is interesting to speculate on the reasons
why participants remain unaware of the single abstract
rule through which the structure of the material can be
easily described. As we indicated in the Discussion of
Experiment 1, not a single participant reported being
aware of any structure in the stimulus material, despite
several hours of experience with the task. While skeptics
will be quick to point out the limitations of verbal report
as a measure of conscious awareness, the result remains
striking, particularly in light of the fact that the structure
of the material is so simple. We take this (admittedly
scant) evidence as providing further support for the
notion that performance in this task is not rule-based,
for we think that genuine rule-based knowledge is nec-
essarily conscious (Cleeremans & Destrebecqz, in press).

Interestingly, Perruchet (1985) reported on a similar
dissociation in the context of an eye-blink conditioning
situation that made it possible to obtain comparable
quantitative measures of priming and awareness. In this
experiment, people were exposed to a series of identical
tones, 50% of which could be followed after a short
interval by an air puff directed to the left cornea. Im-
mediately after each tone was presented (and before the
puff occurred in reinforced trials), people were asked to
indicate (using a 0–7 points scale) the extent to which
they expected the tone to be reinforced. A trial-by-trial
analysis of the results indicated that eye blink responses
were increasingly more likely to occur after presentation
of a tone if the corresponding trial had been preceded by
a series of reinforced trials (i.e., trials during which the
tone had indeed been followed by an air puff). In stark
contrast, however, people’s subjective expectancy of the
occurrence of an air puff tended to decrease with the
number of reinforced trials that preceded the trial under
consideration. In other words, people’s eye blink re-
sponses were completely dissociated from their con-
scious expectations about when each tone would be
followed by an air puff.

The two situations—Perruchet’s eye-blink experiment
and Lee’s scenario—differ in interesting ways. In
Perruchet’s scenario, people follow the gambler’s fallacy
through their conscious expectancy judgments (without
realizing that they do so), yet their behavior fails to be
congruent and appears instead to be exclusively sensitive
to automatic priming. In the experiments described in
this paper, by contrast, it is people’s behavior that re-
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flects the gambler’s fallacy, while their conscious
apprehension of the material simply appears to be ex-
tremely limited. Interestingly, Perruchet, Cleeremans,
and Destrebecqz (in preparation) recently replicated
Perruchet (1985)‘s original eye-blink conditioning results
in a simple RT paradigm, that is, in a situation that
involves voluntary responses.

These different results all point toward strong disso-
ciations between behavior and conscious experience, and
suggest that mere ‘‘quality-of-representation’’ accounts
of the extent to which a representation is available to
verbal report (such as Cleeremans and Jiménez’s frame-
work, briefly described in the Introduction) are not suf-
ficient. What additionally appears to be crucial in making
some representation available to conscious experi-
ence—above and beyond its overall quality (strength,
stability, distinctiveness)—is the extent to which the
representation is accompanied by relevant meta-knowl-
edge, that is, the extent to which the representation can
be redescribed using, for instance, a verbal code.

This redescription is made particularly difficult in
our case because the relevant knowledge (i.e., Lee’s
rule) is not represented per se, but is instead highly
distributed across the representations of the numerous
exemplars or features thereof to which subjects were
exposed. In other words, even though the representa-
tions associated with the relevant knowledge may be
stable in time and relatively strong, they are not nev-
ertheless not distinctive enough to be good candidates
for such redescription, and hence, for availability to
conscious awareness.

Exploring the conditions under which a piece of
knowledge becomes or fails to become available to
conscious awareness over the course of experience with
a particular set of stimuli undoubtedly constitutes one
of the most promising avenues of research in this do-
main (see e.g., Wagner, Gais, Haider, Verleger, & Born,
2004, for a fascinating account of the role of sleep in
insight).

Acknowledgements Maud Boyer is a post-doctoral researcher sup-
ported by Grant RPG-53 from the International Human Frontiers
of Science Program. Arnaud Destrebecqz is a post-doctoral re-
searcher supported by a grant from the Fyssen Foundation. Axel
Cleeremans is a Senior Research Associate of the National Fund
for Scientific Research (Belgium). This work was supported by
FRFC Grant#2.4605.95 F, by a grant from the European Com-
mission (HPRN-CT-1999-000065), and by a grant from the Fyssen
Foundation to Maud Boyer. We thank Pierre Perruchet, Robert
French, Tim Curran, David Shanks, and an anonymous referee for
insightful comments on previous versions of this article.

References

Anderson, J. R. (1993). Rules of the mind. Hillsdale, NJ: Erlbaum
Anderson, J. R., & Schooler, L. J. (1991). Reflections of the en-

vironment in memory. Psychological Science, 2, 296–408.
Anderson, N. H. (1960). Effect of first-order conditional proba-

bility in a two-choice situation.Journal of Experimental Psy-
chology, 56, 73–93.

Baddeley, A. D. (1966). The capacity for generating information by
randomization. Quarterly Journal of Experimental Psychology,
18, 119–129.

Berry, D. C., & Dienes, Z. (1993). Implicit learning: Theoretical and
empirical issues. Hove, UK: Erlbaum.

Boyer, M., Destrebecqz, A., & Cleeremans, A. (1998). The serial
reaction time task: Learning without knowing, or knowing
without learning? In Proceedings of the Twentieth Annual
Meeting of the Cognitive Science Society (pp. 167–172). Mah-
wah, NJ: Erlbaum.

Brooks, L. R. (1978). Non-analytic concept formation and memory
for instances. In E. Rosch & B. Lloyd (Eds.), Cognition and
concepts (pp. 16–211). Mahwah, NJ: Erlbaum.

Budescu, D. V. (1987). A Markov model for generation of random
binary sequences. Journal of Experimental Psychology: Human
Perception and Performance, 15, 25–39.

Cleeremans, A. (1993). Mechanisms of implicit learning: Connec-
tionist models of sequence processing. Cambridge, MA: MIT
Press.

Cleeremans, A. (1997). Principles for implicit learning. In D. C.
Berry (Ed.), How implicit is implicit learning? (pp. 195–234).
Oxford: Oxford University Press.

Cleeremans, A. (forthcoming). Being virtual. Oxford: Oxford
University Press.

Cleeremans, A., & Destrebecqz, A. (in press). Real rules are con-
scious: Open peer commentary to Pothos. Behavioral and Brain
Sciences.
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