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CHAPTER 3
Consciousness: the radical plasticity thesis
Axel Cleeremans�
Cognitive Science Research Unit, Université Libre de Bruxelles CP 191, 50 ave. F.-D. Roosevelt, B1050 Brussels, Belgium

Abstract: In this chapter, I sketch a conceptual framework which takes it as a starting point that conscious
and unconscious cognition are rooted in the same set of interacting learning mechanisms and
representational systems. On this view, the extent to which a representation is conscious depends in a
graded manner on properties such as its stability in time or its strength. Crucially, these properties are
accrued as a result of learning, which is in turn viewed as a mandatory process that always accompanies
information processing. From this perspective, consciousness is best characterized as involving (1) a graded
continuum defined over ‘‘quality of representation’’, such that availability to consciousness and to
cognitive control correlates with quality, and (2) the implication of systems of metarepresentations. A first
implication of these ideas is that the main function of consciousness is to make flexible, adaptive control
over behavior possible. A second, much more speculative implication, is that we learn to be conscious. This
I call the ‘‘radical plasticity thesis’’ — the hypothesis that consciousness emerges in systems capable not
only of learning about their environment, but also about their own internal representations of it.
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Information processing can undoubtedly take
place without consciousness, as abundantly
demonstrated by empirical evidence, but also by
the very fact that extremely powerful information-
processing machines, namely, computers, have
now become ubiquitous. Only but a few would
be willing to grant any quantum of conscious
experience to contemporary computers, yet they
are undeniably capable of sophisticated informa-
tion processing — from recognizing faces to
analyzing speech, from winning chess tournaments
to helping prove theorems. Thus, consciousness is
not information processing; experience is an ‘‘extra
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ingredient’’ (Chalmers, 2007b) that comes over
and beyond mere computation.

With this premise in mind — a premise that just
restates Chalmers’ hard problem, that is, the
question of why it is the case that information
processing is accompanied by experience in
humans and other higher animals — there are
several ways in which one can think about the
problem of consciousness.

One is to simply state, as per Dennett (1991,
2001) that there is nothing more to explain.
Experience is just (a specific kind of) information
processing in the brain; the contents of experience
are just whatever representations have come to
dominate processing at some point in time (‘‘fame
in the brain’’); consciousness is just a harmless
illusion. From this perspective, it is easy to imagine
that machines will be conscious when they have
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accrued sufficient complexity; the reason they are
not conscious now is simply because they are not
sophisticated enough. They lack the appropriate
architecture perhaps, they lack sufficiently broad
and diverse information processing abilities, and
so on. Regardless of what is missing, the basic
point here is that there is no reason to assume,
contra Chalmers, that conscious experience is
anything special. Instead, all that is required is
one or several yet-to-be-identified functional
mechanisms: recurrence, perhaps (Lamme, 2003),
stability of representation (O’Brien and Opie,
1999), global availability (Baars, 1988; Dehaene
et al., 1998), integration and differentiation of
information (Tononi, 2003), or the involvement of
higher order representations (Rosenthal, 1997), to
name just a few.

Another take on this most difficult question is to
consider that experience will never be amenable to
a satisfactory functional explanation. Experience,
according to some (e.g., Chalmers, 1996), is
precisely what is left over once all functional
aspects of consciousness have been explained.
Notwithstanding the fact that so defined, experi-
ence is simply not something one can approach
from a scientific point of view, this position
recognizes that consciousness is a unique (a hard)
problem in the Cognitive Neurosciences. But that
is a different thing from saying that a reductive
account is not possible. A non-reductive account,
however, is exactly what Chalmer’s Naturalistic
Dualism attempts to offer, by proposing that
information, as a matter of ontology, has a dual
aspect — a physical aspect and a phenomenal
aspect. ‘‘Experience arises by virtue of its status
as one aspect of information, when the other
aspect is found embodied in physical processing’’
(Chalmers, 2007a, p. 366). This position leads him
to defend the possibility that experience is a
fundamental aspect of reality. Thus, even thermo-
stats, for instance, may be endowed with very
simple experiences, in virtue of the fact that they
can toggle in two different states.

However, what do we mean when we speak of
‘‘subjective experience’’ or of ‘‘quale’’? The
simplest definition of these concepts (Nagel,
1974) goes right to the heart of the matter:
‘‘Experience’’ is what it feels like for a conscious
organism to be that organism. There is something
it is like for a bat to be a bat; there is nothing it is
like for a stone to be a stone. As Chalmers (2007b)
puts it: ‘‘When we see, for instance, we experience

visual sensations: The felt quality of redness, the
experience of dark and light, the quality of depth
in a visual field’’ (p. 226).

Let us try to engage in some phenomenological
analysis at this point to try to capture what it
means for each of us to have an experience.
Imagine you see a patch of red (Humphrey, 2006).
You now have a red experience — something that
a camera recording the same patch of red will most
definitely not have. What is the difference between
you and the camera? Tononi (2007), from whom I
borrow this simple thought experiment, points out
that one key difference is that when you see the
patch of red, the state you find yourself in is but
one among billions, whereas for a simple light-
sensitive device, it is perhaps one of only two
possible states — thus the state conveys a lot more
differentiated information for you than for a light-
sensitive diode. A further difference is that you are
able to integrate the information conveyed by
many different inputs, whereas the chip on a
camera can be thought of as a mere array of
independent sensors among which there is no
interaction.

Hoping not to sound presumptuous, it strikes
me, however, that both Chalmers’ (somewhat
paradoxically) and Tononi’s analyses miss funda-
mental facts about experience; both analyze it as a
rather abstract dimension or aspect of informa-
tion, whereas experience — what it feels like — is
anything but abstract. On the contrary, what we
mean when we say that seeing a patch of red elicits
an ‘‘experience’’ is that the seeing does something to

us — in particular, we might feel one or several
emotions, and we may associate the redness with
memories of red. Perhaps seeing the patch of red
makes you remember the color of the dress that
your prom night date wore 20 years ago. Perhaps it
evokes a vague anxiety, which we now know is also
shared by monkeys (Humphrey, 1971). To a
synesthete, perhaps seeing the color red will evoke
the number 5. The point is that if conscious
experience is what it feels like to be in a certain
state, then ‘‘What it feels like’’ can only mean the
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specific set of associations that have been estab-
lished by experience between the stimulus or the
situation you now find yourself in, on the one
hand, and your memories, on the other. This is
what one means by saying that there is something
it is like to be you in this state rather than nobody
or somebody else. The set of memories evoked by
the stimulus (or by actions you perform, etc.), and,
crucially, the set of emotional states associated
with each of these memories. It is interesting to
note that Indian philosophical traditions have
placed similar emphasis on the role that emotion
plays in shaping conscious experience (Banerjee, in
press).

Thus, a first point about the very notion of
subjective experience I would like to make here is
that it is difficult to see what experience could
mean beyond (1) the emotional value associated
with a state of affairs, and (2) the vast, complex,
richly structured, experience-dependent network of
associations that the system has learned to
associate with that state of affairs. ‘‘What it feels
like’’ for me to see a patch of red at some point
seems to be entirely exhausted by these two points.
Granted, one could still imagine an agent that
accesses specific memories, possibly associated
with emotional value, upon seeing a patch of red
and who fails to ‘‘experience’’ anything. But I
surmise that this is mere simulation. One could

design such a zombie agent, but any real agent that
is driven by self-developed motivation, and that
cannot help but be influenced by his emotional
states will undoubtedly have experiences much like
ours.

Hence, a first point about what we mean by
‘‘experience’’ is that there is nothing it is like for
the camera to see the patch of red simply because it
does not care: the stimulus is meaningless; the
camera lacks even the most basic machinery that
would make it possible to ascribe any interpreta-
tion to the patch of red; it is instead just a mere
recording device for which nothing matters. There
is nothing it is like to be that camera at that point
in time simply because (1) the experience of
different colors does not do anything to the
camera; that is, colors are not associated with
different emotional valences; and (2) the camera
has no brain with which to register and process its
own states. It is easy to imagine how this could be
different. To hint at my forthcoming argument, a
camera could, for instance, keep a record of the
colors it is exposed to, and come to ‘‘like’’ some
colors better than others. Over time, your camera
would like different colors than mine, and it would
also know that in some non-trivial sense. Appro-
priating one’s mental contents for oneself is the
beginning of individuation, and hence the begin-
ning of a self.

Thus a second point about experience that I
perceive as crucially important is that it does not
make any sense to speak of experience without an
experiencer who experiences the experiences.
Experience is, almost by definition (‘‘what it feels
like’’), something that takes place not in any

physical entity but rather only in special physical
entities, namely cognitive agents. Chalmers’ (1996)
thermostat fails to be conscious because, despite
the fact that it can find itself in different internal
states, it lacks the ability to remove itself from the
causal chain in which it is embedded. In other
words, it lacks knowledge that it can find itself in
different states; it is but a mere object that
responds to inputs in certain ways that one can
fully describe by the laws of physics. While there is
indeed something to be experienced there
(the different states the thermostat can find itself
in), there is no one home to be the subject of these
experiences — the thermostat simply lacks the
appropriate machinery to do so.

This point can also be illustrated by means of
well-known results in the connectionist, or artifi-
cial neural network modeling literature. Consider
for instance Hinton’s (1986) famous demonstra-
tion that a simple back-propagation network can
learn about abstract dimensions of the training set.
Hinton’s network was a relatively simple back-
propagation network trained to process linguistic
expressions consisting of an agent, a relationship,
and a patient, such as for instance ‘‘Maria is the
wife of Roberto’’. The stimulus material consisted
of a series of such expressions, which together
described some of the relationships that exist in the
family trees of an Italian family and of an English
family. The network was required to produce the
patient of each agent-relationship pair it was given
as input. For instance, the network should produce
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‘‘Roberto’’ when presented with ‘‘Maria’’ and
‘‘wife’’. Crucially, each person and each relation-
ship were presented to the network by activating a
single input unit. Hence there was no overlap
whatsoever between the input representations of,
say, Maria and Victoria. Yet, despite this complete
absence of surface similarity between training
exemplars, Hinton showed that after training, the
network could, under certain conditions, develop
internal representations that capture relevant
abstract dimensions of the domain, such as
nationality, sex, or age!

Hinton’s point was to demonstrate that such
networks were capable of learning richly struc-
tured internal representations as a result of merely
being required to process exemplars of the domain.
Crucially, the structure of the internal representa-
tions learned by the network is determined by the
manner in which different exemplars interact with
each other, that is, by their functional similarity,

rather than by their mere physical similarity

expressed, for instance, in terms of how many
features (input units) they share. Hinton thus
provided a striking demonstration of this impor-
tant and often misunderstood aspect of associative
learning procedures by showing that under some
circumstances, specific hidden units of the network
had come to act as detectors for dimensions of the
material that had never been presented explicitly to
the network. These results truly flesh out the
notion that rich, abstract knowledge can simply
emerge as a by-product of processing structured
domains. It is interesting to note that the existence
of such single-unit ‘‘detectors’’ has recently been
shown to exist in human neocortex (Kreiman
et al., 2002). Single-neuron recording of activity in
hippocampus, for instance, has shown that some
individual neurons exclusively respond to highly
abstract entities, such as the words ‘‘Bill Clinton’’
and images of the American president.

Now, the point I want to make with this
example is as follows: one could certainly describe
the network as being aware of nationality, in the
sense that it is sensitive to the concept. It exhibits
differential responding (hence, behavioral sensiti-
vity) to inputs that involve Italian agents vs.
English agents. But, obviously, the network does
not know anything about nationality. It does not
even know that it has such and such representations
of the inputs, nor does it know anything about its
own, self-acquired sensitivity or awareness of the
relevant dimensions. Instead, the rich, abstract,
structured representations that the network has
acquired over training forever remain embedded in
a causal chain that begins with the input and ends
with the network’s responses. As Clark and
Karmiloff-Smith (1993) insightfully pointed out,
such representations are ‘‘first-order’’ representa-
tions to the extent that they are representations in

the system rather than representations for the

system that is, such representations are not
accessible to the network as representations.

What would it take for a network like Hinton’s
to be able to access its own representations, and
what difference would that make with respect to
consciousness?

To answer the first question, the required
machinery is the machinery of agenthood; in a
nutshell, the ability to do something not just with
external states of affairs, but rather with one’s own
representations of such external states. This
crucially requires that the agent be able to access,
inspect, and otherwise manipulate its own repre-
sentations, and this in turn, I surmise, requires
mechanisms that make it possible for an agent to
redescribe its own representations to itself. The
outcome of this continuous ‘‘representational
redescription’’ (Karmiloff-Smith, 1992) process is
that the agent ends up knowing something about
the geography of its own internal states. It has, in
effect, learned about its own representations.
Minimally, this could be achieved rather simply,
for instance by having another network take both
the input (i.e., the external stimulus as represented
proximally) to the first-order network and its
internal representations of that stimulus as inputs
themselves and do something with them.

One elementary thing the system consisting of
the two interconnected networks (the first-order,
observed network and the second-order, observing
network) would now be able to do is to make
decisions, for instance, about the extent to which
an external input to the first-order network elicits a
familiar pattern of activation over its hidden units
or not. This would in turn enable the system to
distinguish between hallucination and blindness
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(see Lau, in press), or to come up with judgments
about the performance of the first-order network
(Persaud et al., 2007; Dienes, in press).

To address the second question (what difference
would representational redescription make in
terms of consciousness), if you think this is starting
to sound like a higher order thought theory of
consciousness (Rosenthal, 1997), you may be right.
While I do not feel perfectly happy with all aspects
of Higher-Order Thought Theory, I do believe,
however, that higher order representations (I will
call them metarepresentations in what follows)
play a crucial role in consciousness.

An immediate objection to this idea is as
follows: if there is nothing intrinsic to the existence
of a representation in a cognitive system that
makes this representation conscious, why should
things be different for metarepresentations? After
all, metarepresentations are representations also.
Yes indeed, but with a crucial difference. Metare-
presentations inform the agent about its own
internal states, making it possible for it to develop
an understanding of its own workings. And this,
I argue, forms the basis for the contents of
conscious experience, provided of course — which
cannot be the case in an contemporary artificial
system — that the system has learned about its
representations by itself, over its development, and
provided that it cares about what happens to it,
that is, provided its behavior is rooted in
emotion-laden motivation (to survive, to mate, to
find food, etc.).
The radical plasticity thesis

I would thus like to defend the following claim:
conscious experience occurs if and only if an
information processing system has learned about
its own representations of the world. To put this
claim even more provocatively: consciousness is
the brain’s theory about itself, gained through
experience interacting with the world, and, cru-
cially, with itself. I call this claim the ‘‘Radical

Plasticity Thesis’’, for its core is the notion that
learning is what makes us conscious. How so? The
short answer, as hinted above, is that conscious-
ness involves not only knowledge about the world,
but crucially, knowledge about our own internal
states, or mental representations. When I claim to
be conscious of a stimulus, I assert my ability to
discriminate cases where the stimulus is present
from cases where it is not. But what is the basis of
this ability, given that I have no direct access to the
stimulus? The answer is obvious: some neural
states correlate with the presence or absence of the
stimulus, and I make judgments about these states
to come to a decision.

Note that this is the way in which all informa-
tion processing takes place, with or without
consciousness. After all, we never have direct
access to anything that is part of the world in
which we are embedded; any perception necessa-
rily involves mediation through neural states,
which in this sense are appropriately characterized
as internal representations of external states of
affairs.

What, then, differentiates cases where one is
conscious of a state of affairs from cases where one
remains unaware of it? It is obvious that in the first
case, the relevant representations are accompanied
by subjective experience whereas in the second,
they are not.

This difference is in fact what motivates Baars’
‘‘contrastive approach’’, through which one seeks
to identify differences between information pro-
cessing with and without consciousness by ‘‘treat-
ing consciousness as a variable’’, that is, by
designing experimental paradigms in which the
only difference of interest is one of conscious
awareness. The same idea underpins what neuro-
scientists call the ‘‘search for the neural correlates
of consciousness’’ (Frith et al., 1999). Here, the
goal is to identify cerebral regions, neural pro-
cesses, or processing pathways where one finds
activity that correlates not with some objective
state of affairs (i.e., a stimulus), but rather with
people’s own subjective reports that they are
conscious of that state of affairs.

As Lau (this volume) points out, however,
things are not so simple, for this approach rests
on the premise that one can indeed design an
experimental situation in which consciousness is
the only difference. This, as it turns out, is
extremely difficult to achieve, precisely because
consciousness does make a difference! In other
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words, performance at a given task will also be
different depending on whether the subject is
conscious or not of the relevant state of affairs.

In the following, I would now like to present a
framework through which to characterize the
relationships between learning and consciousness.
If the main cognitive function of consciousness is
to make adaptive control of behavior possible, as
is commonly accepted, then consciousness is
necessarily closely related to processes of learning,
because one of the central consequences of
successful adaptation is that conscious control is
no longer required over the corresponding beha-
vior. Indeed, it might seem particularly adaptive
for complex organisms to be capable of behavior
that does not require conscious control, for
instance because behavior that does not require
monitoring of any kind can be executed faster or
more efficiently than behavior that does require
such control. What about conscious experience?
Congruently with our intuitions about the role of
consciousness in learning, we often say of some-
body who failed miserably at some challenging
endeavor, such as completing a paper by the
deadline, that the failure constitutes ‘‘a learning
experience’’. What precisely do we mean by this?
We mean that the person can now learn from her
mistakes, that the experience of failure was
sufficiently imbued with emotional value that it
has registered in that person’s brain. The experi-
ence hurt, it made one realize what was at stake, it
made us think about it, in other words, it made us
consciously aware of what failed and why.

But this minimally requires what Kirsh (1991)
has called ‘‘explicit representation’’, namely the
presence of representations that directly represent
the relevant information. By ‘‘direct’’ here, I mean
that the information is represented in such a
manner that no further computation is required to
gain access to it. For instance, a representation
that is explicit in this sense might simply consist of
a population of neurons that fire whenever a
specific condition holds: a particular stimulus is
present on the screen, my body is in a particular
state (i.e., pain or hunger).

By assumption, such ‘‘explicit’’ representations
are not necessarily conscious. Instead, they are
merely good candidates to enter conscious
awareness in virtue of features such as their
stability, strength, or distinctiveness (Cleeremans,
2005, 2006). What is missing, then? What is
missing is that such representations be themselves
the target of other representations. And how
would this make any difference? It makes a crucial
difference, for the relevant first-order representa-

tions are now part of the agent’s repertoire of
mental states; such representations are then, and
only then, recognized as playing the function of
representing some other (external) state of affairs.
A learning-based account of consciousness

I would now like to introduce the set of assump-
tions that together form the core of the framework
(see Cleeremans and Jiménez, 2002; Cleeremans, in
preparation, for more detailed accounts). It is
important to keep it in mind that the framework
is based on the connectionist framework (e.g.,
Rumelhart and McClelland, 1986). It is there-
fore based on many central ideas that characterize
the connectionist approach, such as the fact that
information processing is graded and continuous,
and that it takes place over many interconnected
modules consisting of processing units. In such
systems, long-term knowledge is embodied in
the pattern of connectivity between the proces-
sing units of each module and between the
modules themselves, while the transient patterns
of activation over the units of each module
capture the temporary results of information
processing.

This being said, a first important assumption is
that representations are graded, dynamic, active,

and constantly causally efficacious (Cleeremans,
1994). Patterns of activation in neural networks
and in the brain are typically distributed and can
therefore vary on a number of dimensions, such as
their stability in time, their strength, or their
distinctiveness. Stability in time refers to how long
a representation can be maintained active during
processing. There are many indications that
different neural systems involve representations
that differ along this dimension. For instance,
prefrontal cortex, which plays a central role in
working memory, is widely assumed to involve
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circuits specialized in the formation of the endur-
ing representations needed for the active main-
tenance of task-relevant information. Strength of
representation simply refers to how many proces-
sing units are involved in the representation, and
to how strongly activated these units are. As a rule,
strong activation patterns will exert more influence
on ongoing processing than weak patterns.
Finally, distinctiveness of representation is inver-
sely related to the extent of overlap that exists
between representations of similar instances. Dis-
tinctiveness has been hypothesized as the main
dimension through which cortical and hippocam-
pal representations differ (McClelland et al., 1995;
O’Reilly and Munakata, 2000), with the latter
becoming active only when the specific conjunc-
tions of features that they code for are active
themselves.

In the following, I will collectively refer to these
different dimensions as ‘‘quality of representation’’
(see also Farah, 1994). The most important notion
that underpins these different dimensions is that
representations, in contrast to the all-or-none
propositional representations typically used in
classical theories, instead have a graded character
that enables any particular representation to
convey the extent to which what it refers to is
indeed present.

Another important aspect of this characteriza-
tion of representational systems in the brain is
that, far from being static propositions waiting to
be accessed by some process, representations
instead continuously influence processing regard-
less of their quality. This assumption takes its
roots in McClelland’s (1979) analysis of cascaded
processing, which by showing how modules
interacting with each other need not ‘‘wait’’ for
other modules to have completed their processing
before starting their own, demonstrated how
stage-like performance could emerge out of such
continuous, non-linear systems. Thus, even weak,
poor-quality traces are capable of influencing
processing, for instance through associative
priming mechanisms, that is, in conjunction with
other sources of stimulation. Strong, high-quality
traces, in contrast have generative capacity, in the
sense that they can influence performance inde-
pendently of the influence of other constraints,
that is, whenever their preferred stimulus is
present.

A second important assumption is that learning

is a mandatory consequence of information proces-

sing. Indeed, every form of neural information
processing produces adaptive changes in the
connectivity of the system, through mechanisms
such as long-term potentiation (LTP) or long-term
depression (LTD) in neural systems, or hebbian
learning in connectionist systems. An important
aspect of these mechanisms is that they are
mandatory in the sense that they take place
whenever the sending and receiving units or
processing modules are co-active. O’Reilly and
Munakata (2000) have described hebbian learning
as instantiating what they call model learning. The
fundamental computational objective of such
unsupervised learning mechanisms is to enable the
cognitive system to develop useful, informative
models of the world by capturing its correlational
structure. As such, they stand in contrast with task

learning mechanisms, which instantiate the differ-
ent computational objective of mastering specific
input–output mappings (i.e., achieving specific
goals) in the context of specific tasks through
error-correcting learning procedures.

Having put in place assumptions about repre-
sentations and learning, the central ideas that I
would now like to explore are (1) that the extent to
which a particular representation is available to
consciousness depends on its quality, (2) that
learning produces, over time, higher quality (and
therefore adapted) representations, and (3) that
the function of consciousness is to offer necessary
control over those representations that are strong
enough to influence behavior, yet not sufficiently
adapted that their influence does not require
control anymore.

Figure 1 aims to capture these ideas by
representing the relationships between quality
of representation (X-axis) on the one hand and
(1) potency, or the extent to which a rep-
resentation can influence behavior, (2) availabi-
lity to control, (3) availability to subjective
experience. I discuss the figure at length in the
following section. Let us simply note here that
the X-axis represents a continuum between
weak, poor-quality representations on the left



Fig. 1. Graphical representation of the relationships between quality of representation (X-axis) and (1) potency, (2) availability to

control, (3) availability to subjective experience. See text for further details.
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and very strong, high-quality representations on
the right.

Two further points are important to be kept in
mind with respect to Fig. 1. First, the relationships
depicted in the figure are intended to represent
availability to some dimension of behavior or
consciousness independently of other considera-
tions. Many potentially important modulatory
influences on the state of any particular module
are thus simply not meant to be captured neither
by Fig. 1, nor by the framework presented here.
Second, the figure is intended to represent what
happens in each of the many processing modules
involved in any particular cognitive task. Thus, at
any point in time, there will be many such modules
active, each contributing to some extent to
behavior and to conscious experience; each modu-
lating the activity of other modules. With these
caveats in mind, let me now turn to four
assumptions about consciousness and its relation-
ship with learning:

Assumption C1: Consciousness involves two

dimensions: subjective experience and control
As argued by Block (1995, 2005) and even

though there is continuing debate about this issue,
consciousness involves at least two separable
aspects, namely access consciousness (A-conscious-
ness) and phenomenal consciousness (P-conscious-
ness). According to Block (1995), ‘‘A perceptual
state is access-conscious roughly speaking if its
content — what is represented by the perceptual
state — is processed via that information proces-
sing function, that is, if its content gets to the
Executive system, whereby it can be used to control
reasoning and behavior’’ (p. 234). In other words,
whether a state is A-conscious is defined essentially
by the causal efficacy of that state; the extent to
which it is available for global control of action.
Control refers to the ability of an agent to control,
to modulate, and to inhibit the influence of
particular representations on processing. In this
framework, control is simply a function of potency,
as described in assumption C3. In contrast,
P-consciousness refers to the phenomenal aspects
of subjective experience discussed in the introduc-
tion: a state is P-conscious to the extent that
there is something it is like to be in that state: I am
currently experiencing a pain, hearing a beauti-
ful piece of music, entertaining the memory of a
joyful event. While the extent to which potency
(i.e., availability to access consciousness) and
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control on the one hand, and subjective experience
(i.e., availability to phenomenal consciousness)
on the other, are dissociable is debatable, the
framework suggests that potency, control, and
phenomenal experience are closely related to each
other.

Assumption C2: Availability to consciousness

correlates with quality of representation
This assumption is also a central one in this

framework. It states that explicit, conscious know-
ledge involves higher quality memory traces than
implicit knowledge. ‘‘Quality of representation’’
designates several properties of memory traces,
such as their relative strength in the relevant
information-processing pathways, their distinctive-
ness, or their stability in time. The assumption is
consistent with the theoretical positions expressed
by several different authors over the last few years.
O’Brien and Opie (1999) have perhaps been the
most direct in endorsing a characterization of
phenomenal consciousness in terms of the proper-
ties of mental representations in defending the
idea that ‘‘consciousness equals stability of repre-
sentation’’, that is, that the particular mental
contents that one is aware of at some point in
time correspond to those representations that are
sufficiently stable in time. Mathis and Mozer
(1996) have also suggested that consciousness
involves stable representations, specifically by
offering a computational model of priming pheno-
mena in which stability literally corresponds to
the state that a dynamic ‘‘attractor’’ network
reaches when the activations of a subset of its
units stops changing and settle into a stable, un-
changing state.

A slightly different perspective on the notion of
‘‘quality of representation’’ is offered by authors
who emphasize not stability, but strength of
representation as the important feature by which
to characterize availability to consciousness. One
finds echoes of this position in the writings of
Kinsbourne (1997), for whom availability to
consciousness depends on properties of representa-
tions such as duration, activation, or congruence.

In Fig. 1, I have represented the extent to which
a given representation is available to the differ-
ent components of consciousness (phenomenal
consciousness, access-consciousness/potency, and
control) as functions of a single underlying dimen-
sion expressed in terms of the quality of this
representation. Availability to access-consciousness
is represented by the curve labeled ‘‘potency’’,
which expresses the extent to which representations
can influence behavior as a function of their quality:
high-quality, strong, distinctive representations,
by definition, are more potent than weaker
representations and hence more likely to influence
behavior. ‘‘Availability to control processes’’ is
represented by a second curve, so labeled. We
simply assume that both weak and very strong
representations are difficult to control, and that
maximal control can be achieved on representations
that are strong enough that they can begin to
influence behavior in significant ways, yet not so
strong that have become utterly dominant in
processing. Finally, availability to phenomenal
experience is represented by the third curve,
obtained simply by adding the other two. The
underlying intuition, discussed in the context of
assumption C4, is that which contents enter
subjective experience is a function of both avail-
ability to control and of potency.

Assumption C3: Developing high-quality

representations takes time
This assumption states that the emergence of

high quality representations in a given processing
module takes time, both over training or develop-
ment, as well as during processing of a single
event. Figure 1 can thus be viewed as representing
not only the relationships between quality of
representation and their availability to the differ-
ent components of consciousness, but also as a
depiction of the dynamics of how a particular
representation will change over the different time
scales corresponding to development, learning, or
within-trial processing (see Destrebecqz and
Cleeremans, 2001, 2003; Destrebecqz et al., 2005,
for further developments of this specific idea;
Cleeremans and Sarrazin, 2007).

Both skill acquisition and development, for
instance, involve the long-term progressive emer-
gence of high-quality, strong memory traces based
on early availability of weaker traces. Likewise, the
extent to which memory traces can influence
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performance at any moment (e.g., during a single
trial) depends both on available processing time, as
well as on overall trace strength. These processes of
change operate on the connection weights between
units, and can involve either task-dependent, error-
correcting procedures, or unsupervised procedures
such as hebbian learning. In either case, continued
exposure to exemplars of the domain will result in
the development of increasingly congruent and
strong internal representations that capture more
and more of the relevant variance. Although I
think of this process as essentially continuous,
three stages in the formation of such internal
representations (each depicted as separate regions
in Fig. 1) can be distinguished: implicit representa-
tions, explicit representations, and automatic
representations.

The first region, labeled ‘‘Implicit Cognition’’ in
Fig. 1, is meant to correspond to the point at
which processing starts in the context of a single
trial, or to some early stage of development or skill
acquisition. In either case, this stage is character-
ized by weak, poor-quality representations. A first
important point is that representations at this
stage are already capable of influencing perfor-
mance, as long as they can be brought to bear on
processing together with other sources of con-
straints, that is, essentially through mechanisms of
associative priming and constraint satisfaction. A
second important point is that this influence is best
described as ‘‘implicit’’, because the relevant
representations are too weak (i.e., not distinctive
enough) for the system as a whole to be capable of
exerting control over them: you cannot control
what you cannot identify as distinct from some-
thing else.

The second region of Fig. 1 corresponds to the
emergence of explicit representations, defined as
representations over which one can exert control.
In the terminology of attractor networks, this
would correspond to a stage during learning at
which attractors become better defined — deeper,
wider, and more distinctive, so corresponding to
the best ‘‘constraint-satisfaction’’ interpretation of
a state of affairs (Maia and Cleeremans, 2005). It is
also at this point that the relevant representations
acquire generative capacity, in the sense that they
now have accrued sufficient strength to have the
potential to determine appropriate responses when
their preferred stimulus is presented to the system
alone. Such representations are also good candi-
dates for redescription and can thus be recoded in
various different ways, for instance, as linguistic
propositions.

The third region involves what I call automatic
representations, that is, representations that have
become so strong that their influence on behavior
can no longer be controlled (i.e., inhibited). Such
representations exert a mandatory influence on
processing. Importantly, however, one is aware
both of possessing them (i.e., one has relevant
metaknowledge) and of their influence on proces-
sing (see also Tzelgov, 1997), because availability
to conscious awareness depends on the quality of
internal representations, and that strong represen-
tations are of high quality. In this perspective then,
one can always be conscious of automatic beha-
vior, but not necessarily with the possibility of
control over these behaviors.

In this framework, skill acquisition and deve-
lopment therefore involve a continuum at both
ends of which control over representations is
impossible or difficult, but for very different
reasons: implicit representations influence perfor-
mance but cannot be controlled because they
are not yet sufficiently distinctive and strong
for the system to even know it possesses them.
This might in turn be related to the fact that,
precisely because of their weakness, implicit
representations cannot influence behavior on
their own, but only in conjunction with other
sources of constraints. Automatic representations,
on the other hand, cannot be controlled because
they are too strong, but the system is aware
both of their presence and of their influence on
performance.

Assumption C4: The function of consciousness is to

offer flexible, adaptive control over behavior
The framework gives consciousness a central

place in information processing, in the sense that
its function is to enable flexible control over
behavior. Crucially, however, consciousness is not
necessary for information processing, or for
adaptation in general, thus giving a place for
implicit learning in cognition. I believe this
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perspective to be congruent with theories of
adaptation and optimality in general.

Indeed, another way to think about the role of
learning in consciousness is to ask: ‘‘When does one
need control over behavior?’’ Control is perhaps
not necessary for implicit representations, for
their influence on behavior is necessarily weak (in
virtue of the fact that precisely because they are
weak, such representations are unlikely to be detri-
mental to the organism even if they are not parti-
cularly well-adapted). Likewise, control is not
necessary for automatic representations, because
presumably, those representations that have
become automatic after extensive training should
be adapted (optimal) as long as the processes of
learning that have produced them can themselves
be assumed to be adaptive. Automatic behavior is
thus necessarily optimal behavior in this frame-
work, except, precisely, in cases such as addiction,
obsessive–compulsive behavior, or laboratory situa-
tions where the automatic response is manipulated
to be non-optimal, such as in the Stroop situation.
Referring again to Fig. 1, my analysis there-
fore suggests that the representations that require
the most control are the explicit representations
that correspond to the central region of Fig. 1:
representations that are strong enough that they
have the potential to influence behavior in and
of themselves (and hence that one should really
care about, in contrast to implicit representations),
but not sufficiently strong that they can be assu-
med to be already adapted, as is the case for
automatic representations. It is for those repre-
sentations that control is needed, and, for this
reason, it is these representations that one is most
aware of.

Likewise, this analysis also predicts that the
dominant contents of subjective experience at any
point in time consist precisely of those representa-
tions that are both strong enough that they can
influence behavior, yet weak enough that they still
require control. Figure 1 reflects these ideas by
suggesting that the contents of phenomenal
experience depend both on the potency of cur-
rently active representations as well as on their
availability to control. Since availability to control
is inversely related to potency for representations
associated with automatic behavior, this indeed
predicts weaker availability to phenomenal experi-
ence of ‘‘very strong’’ representations as compared
to ‘‘merely strong’’ representations. In other
words, such representations can become conscious
if appropriate attention is directed towards their
contents — as in cases where normally automatic
behavior (such as walking) suddenly becomes
conscious because the normal unfolding of the
behavior has been interrupted (e.g., because I’ve
stumbled upon something) — but they are not
normally part of the central focus of awareness nor
do they require cognitive control. It is interesting
to note that these ideas are roughly consistent with
Jackendoff’s (1987) and Prinz’s (2007) ‘‘Intermedi-
ate Level Theory of Consciousness’’.

The framework thus leaves open four distinct
possibilities for knowledge to be implicit. First,
knowledge that is embedded in the connection
weights within and between processing modules
can never be directly available to conscious
awareness and control. This is simply a conse-
quence of the fact that I assume that consciousness
necessarily involves representations (patterns of
activation over processing units). The knowledge
embedded in connection weights will, however,
shape the representations that depend on it, and its
effects will therefore be detectable — but only
indirectly, and only to the extent that these effects
are sufficiently marked in the corresponding
representations.

Second, to enter conscious awareness, a repre-
sentation needs to be of sufficiently high quality in
terms of strength, stability in time, or distinctive-
ness. Weak representations are therefore poor
candidates to enter conscious awareness. This,
however, does not necessarily imply that they
remain causally inert, for they can influence
further processing in other modules, even if only
weakly so.

Third, a representation can be strong enough to
enter conscious awareness, but fail to be associated
with relevant metarepresentations. There are thus
many opportunities for a particular conscious
content to remain, in a way, implicit, not because
its representational vehicle does not have the
appropriate properties, but because it fails to be
integrated with other conscious contents. Dienes
and Perner (2003) offer an insightful analysis of



30
the different ways in which what I have called
high-quality representations can remain implicit.
Likewise, phenomena such as inattentional blind-
ness (Mack and Rock, 1998) or blindsight
(Weiskrantz, 1986) also suggest that high-quality
representations can nevertheless fail to reach
consciousness, not because of their inherent
properties, but because they fail to be attended
to or because of functional disconnection with
other modules (see Dehaene et al., 2006).

Finally, a representation can be so strong that
its influence can be no longer be controlled.
In such cases, it is debatable whether the knowl-
edge should be taken as genuinely unconscious,
because it can certainly become fully conscious
as long as appropriate attention is directed to it,
but the point is that such very strong representa-
tions can trigger and support behavior without
conscious intention and without the need
for conscious monitoring of the unfolding beha-
vior.
Metarepresentation

Strong, stable, and distinctive representations are
thus explicit representations, at least in the sense
put forward by Koch (2004): they indicate what
they stand for in such a manner that their reference
can be retrieved directly through processes invol-
ving low computational complexity (see also
Kirsh, 1991, 2003). Conscious representations, in
this sense, are explicit representations that have
come to play, through processes of learning,
adaptation, and evolution, the functional role of
denoting a particular content for a cognitive
system. Importantly, quality of representation
should be viewed as a graded dimension.

Once a representation has accrued sufficient
strength, stability, and distinctiveness, it may be
the target of metarepresentations: the system may
then ‘‘realize’’, if it is so capable, that is, if it is
equipped with the mechanisms that are necessary
to support self-inspection, that it has learned a
novel partition of the input; that it now possesses a
new ‘‘detector’’ that only fires when a particular
kind of stimulus, or a particular condition, is
present. Humphrey (2006) emphasizes the same
point when he states that ‘‘This self-monitoring by
the subject of his own response is the prototype of
the ‘feeling sensation’ as we humans know it’’
(p. 90). Importantly, my claim here is that such
metarepresentations are learned in just the same
way as first-order representations, that is, by virtue
of continuously operating learning mechanisms.
Because metarepresentations are also represe-
ntations, the same principles of stability, strength,
and distinctiveness therefore apply. An impor-
tant implication of this observation is that
activation of metarepresentations can become
automatic, just as it is the case for first-order
representations.

What might be the function of such metarepre-
sentations? One intriguing possibility is that their
function is to indicate the mental attitude through
which a first-order representation is held: is this
something I know, hope, fear, or regret? Posses-
sing such metaknowledge about one’s knowledge
has obvious adaptive advantages, not only with
respect to the agent himself, but also because of
the important role that communicating such
mental attitudes to others plays in both competi-
tive and cooperative social environments.

However, there is another important function
that metarepresentations may play: they can also
be used to anticipate the future occurrences of
first-order representations. Thus for instance, if my
brain learns that SMA is systematically active
before M1, then it can use SMA representations to
explicitly represent their consequences down-
stream, that is, M1 activation, and ultimately,
action. If neurons in SMA systematically become
active before an action is carried out, a metare-
presentation can link the two and represent this
fact explicitly in a manner that will be experienced
as intention. That is, when neurons in the SMA
become active, I experience the feeling of intention
because my brain has learned, unconsciously, that
such activity in SMA precedes action. It is this
knowledge that gives qualitative character to
experience, for, as a result of learning, each
stimulus that I see, hear, feel, or smell is now not
only represented, but also re-represented through
metarepresentations that enrich and augment the
original representation(s) with knowledge about
(1) how similar the manner in which the stimulus’
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representation is with respect to that associated
with other stimuli, (2) how similar the stimulus’
representation is now with respect to what it was
before, (3) how consistent is a stimulus’ represen-
tation with what it typically is, (4) what other
regions of my brain are active at the same time that
the stimulus’ representation is, etc. This perspec-
tive is akin to the sensorimotor perspective
(O’Regan and Noë, 2001) in the sense that
awareness is linked with knowledge of the con-
sequences of our actions, but, crucially, the
argument is extended to the entire domain of
neural representations.
Conclusion

Thus we end with the following idea, which is the
heart of the ‘‘radical plasticity thesis’’: the brain
continuously and unconsciously learns not only
about the external world, but about its own
representations of it. The result of this uncons-
cious learning is conscious experience, in virtue of
the fact that each representational state is now
accompanied by (unconscious learnt) metarepre-
sentations that convey the mental attitude with
which these first-order representations are held.
From this perspective thus, there is nothing
intrinsic to neural activity, or to information per
se, that makes it conscious. Conscious expe-
rience involves specific mechanisms through which
particular (i.e., stable, strong, and distinctive)
unconscious neural states become the target of
further processing, which I surmise involves some
form of representational redescription in the sense
described by Karmiloff-Smith (1992). These ideas
are congruent both with higher order theories
in general (Rosenthal, 1997; Dienes and Perner,
1999; Dienes, in press), but also with those of Lau
(in press) who characterizes consciousness as
‘‘signal detection on the mind’’. Finally, one
dimension that I feel is sorely missing from
contemporary discussion of consciousness is
emotion (see Damasio, 1999; LeDoux, 2002;
Tsuchiya and Adolphs, 2007). Conscious experi-
ence would not exist without experiencers who
care about their experiences!
Acknowledgments

A.C. is a Research Director with the National
Fund for Scientific Research (FNRS, Belgium).
This work was supported by an institutional grant
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