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a b s t r a c t

Recently, Windey, Gevers, and Cleeremans (2013) proposed a level of processing (LoP)
hypothesis claiming that the transition from unconscious to conscious perception is influ-
enced by the level of processing imposed by task requirements. Here, we carried out two
experiments to test the LoP hypothesis. In both, participants were asked to classify briefly
presented pairs of letters as same or different, based either on the letters’ physical features
(a low-level task), or on a semantic rule (a high-level task). Stimulus awareness was mea-
sured by means of the four-point Perceptual Awareness Scale (PAS). The results showed
that low or moderate stimulus visibility was reported more frequently in the low-level task
than in the high-level task, suggesting that the transition from unconscious to conscious
perception is more gradual in the former than in the latter. Therefore, although alternative
interpretations remain possible, the results of the present study fully support the LoP
hypothesis.

! 2015 Elsevier Inc. All rights reserved.

1. Introduction

Our subjective experience suggests that in some cases a visual stimulus might pop up in consciousness instantly, whereas
in other cases, awareness of a stimulus might arise only gradually. Congruently, recent empirical studies on visual awareness
have demonstrated either a sharp threshold beyond which initially unconscious information becomes conscious (Asplund,
Fougnie, Zughni, Martin, & Marois, 2014; Sergent & Dehaene, 2004), or a gradual transition from unconscious to conscious
processing (Nieuwenhuis & de Kleijn, 2011; Overgaard, Rote, Mouridsen, & Ramsøy, 2006; Sandberg, Timmermans,
Overgaard, & Cleeremans, 2010). Yet, the actual causes of these contrasting phenomena are poorly understood, and current
theories of consciousness offer rather contradictory predictions in this respect. For instance, the global neuronal workspace
model (Dehaene, Changeux, & Naccache, 2011) predicts a sharp threshold for conscious perception, whereas the radical plas-
ticity thesis (Cleeremans, 2011) supports the idea that the underlying processes are fundamentally graded. The latter view is
also, at least partially, consistent with Lamme’s (2010) hypothesis of recurrent neural mechanisms, which likewise assumes
gradual access to conscious content.
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Recently, Windey, Gevers, and Cleeremans (2013) pointed out that less gradual or even dichotomous dynamics have typ-
ically been obtained in tasks that involve relatively complex stimuli, such as number or word categorization tasks (del Cul,
Baillet, & Dehaene, 2007; Gaillard et al., 2009), whereas the gradual pattern has typically been reported in studies that
involve very simple stimuli such as gratings or shapes (Overgaard et al., 2006; Sandberg et al., 2010). Accordingly,
Windey and colleagues (2013; Windey, Vermeiren, Atas, & Cleeremans, 2014) proposed the hypothesis that level of process-
ing (LoP), as imposed by the requirements of any specific task (cf. Craik & Lockhart, 1972; Lockhart & Craik, 1990; Petersen,
Fox, Posner, Mintun, & Raichle, 1988), influences the dynamics of the transition from unconscious to conscious perception.
The more complex the required processing is, the less gradual, or more nonlinear, is the transition. Windey et al. (2013)
tested this prediction by comparing accuracy and subjective visibility ratings in two tasks, a color identification task (a sim-
ple, ‘‘low-level’’ processing task) and a numerical judgment task (a more complex, ‘‘high-level’’ processing task), performed
on the very same stimuli (colored digits). The stimuli were presented briefly (within a range of 10–80 ms in a psychophysical
design) and masked. Stimuli were rated for subjective visibility using the four-point Perceptual Awareness Scale (PAS,
Ramsøy & Overgaard, 2004). In line with the predictions, the results indicated slightly more gradual patterns of conscious
perception in the low-level than in the high-level task.

The results of Windey et al. (2013) support the LoP hypothesis, however, the study failed to present evidence that the two
tasks indeed involve different levels of processing. Such evidence may be easily provided by means of straightforward men-
tal chronometry (a method based on the subtractive method of Donders and the additive factor logic of Sternberg: see e.g.,
Posner, 2005). Specifically, if a task A involves some higher stages of processing than task B, then response time in task A
should be longer than in Task B, because any additional stages of processing must take some additional time to be completed.
If there is no such difference between two tasks or conditions, then we do not know if they indeed involve different levels of
processing.

The present study aims to address this issue and to provide a further test for the LoP hypothesis. We used a classic
Posner’s paradigm, which has been developed to study the levels (or depth) of processing (Posner & Mitchell, 1967). In
two experiments (E1 and E2), we asked participants to classify pairs of letters as same or different, based either (1) on their
physical identity (e.g., both letters are uppercase – E1, or in the same color – E2)—a factor assumed to involve low LoP, or (2)
on a rule (e.g., both letters are consonants, E1 and E2)—a factor assumed to involve high LoP (cf. Petersen et al., 1988; Posner
& Mitchell, 1967). In E1 we used a letter case identity task as the low LoP task, based on the Posner and Mitchell (1967) pro-
cedure, whereas in E2 we used a color identity task, which allows for better differentiation between the low- and high-level.
This is because comparing the physical identity of two letters might still be taken to involve minimal semantic processing (cf.
Dehaene & Cohen, 2011). The color identification task should minimize such involvement (and also make the procedure
more comparable with Windey et al., 2013). All stimuli in both experiments were presented briefly (over eight presentation
durations) and masked to ensure limited visibility. Further, in both experiments, subjective visibility of the stimuli was mea-
sured by means of the four-points PAS scale. Based on the logic of mental chronometry, we expected response times (RT) to
be longer in the high-level task than in the low-level task. Following the LoP hypothesis, we expected the transition from
unconscious to conscious perception to be more gradual in the low-level task than in the high-level task. A more gradual
transition would be reflected in the higher frequency of middle PAS ratings (2 and 3), indicating that the stimuli are con-
sciously perceived, but with moderate or even low visibility. On the other hand, observing that the middle ratings are rarely
used (in favor of the highest 4th rating) would suggest that when the stimuli are perceived consciously, they are perceived
right away with clear visibility, indicating a less gradual, or even dichotomous transition from unconscious to conscious pro-
cessing (see Sandberg et al., 2010; Sergent & Dehaene, 2004; Wierzchoń, Paulewicz, Asanowicz, Timmermans, & Cleeremans,
2014; Windey et al., 2014, for a similar approach). Thus, in operational terms, we expected that in the high-level task the
middle PAS ratings will be used less frequently as compared to the low-level task.

2. Method

2.1. Participants

Forty-two participants (6 males, mean age = 19.76, SD = 1.23) took part in Experiment 1, and 52 participants (11 males,
mean age = 19.75, SD = 1.58) took part in Experiment 2. One participant in E1 was an outlier in both accuracy and PAS results
and was excluded from the analyses. All participants were students of the Jagiellonian University and participated in the
study in exchange for course credits. They reported normal or corrected-to-normal vision, normal color vision, and no history
of neurological disorders. In both experiments, participants were randomly assigned to one of the two experimental groups
performing either the low-level, or the high-level task.

2.2. Stimuli, apparatus, and procedure

2.2.1. Experiment 1
The classic paradigm developed by Posner and Mitchell (1967) was used to induce low- and high-level of processing. Pairs

of Latin letters (both lower- and uppercase) presented simultaneously on the screen served as target stimuli. The uppercase
letters subtended !2.0" of visual angle. The letters were paired together either as physically identical (e.g., ‘AA’) or physically

2 A. Anzulewicz et al. / Consciousness and Cognition 36 (2015) 1–11



different (e.g., ‘Aa’) for the low-level task, and as both consonants or both vowels (e.g., ‘AA’ or ‘bb’), or as one consonant and
one vowel (e.g., ‘AB’, or ‘ec’), for the high-level task (to avoid confusion, in the high-level task, each pair consisted either of
two lowercase or two uppercase letters). Ten different combinations of letters were used in each possible task condition (i.e.,
ten different pairs of two physically identical capital letters, ten different pairs of two physically different uppercase letters,
ten different pairs of two physically identical lowercase letters, etc.). All letters were rendered in black color. The target stim-
uli were followed by a mask consisting of two hash symbols flanked by square brackets: ‘‘[##]’’. The stimuli were presented
at the center of a 2100 computer screen, with a refresh rate of 60 Hz (i.e., frame duration " 16 ms), via DMDX software, which
allows precise control of stimulus display timing (Forster & Forster, 2003; Garaizar, Vadillo, López-de-Ipiña, & Matute, 2014).

An example trial is depicted in Fig. 1. On each trial, the following sequence of events took place: a central fixation cross
was first presented for 1000 ms. Next, target stimuli (a pair of letters) appeared (16–128 ms) and was immediately followed
by the mask (200 ms). Target stimuli were presented for a duration ranging from 16 to 128 ms (8 possibilities, in steps of
16 ms). The order of the target durations was random. Short stimulus durations were used in order to avoid a ceiling effect
in visibility ratings. After each trial, participants classified the stimuli as same or different. The low-level task required clas-
sification of the letters based on their surface characteristics, i.e., physical identity: ‘‘are both letters lowercase or upper-
case?’’ The high-level task required classification based on semantic identity: ‘‘are both letters vowels or consonants?’’
Participants responded by pressing one of two color-marked keys: a green key (Enter) for the answer: ‘‘same’’, and a red
key (right Shift) for the answer ‘‘different’’. The pattern of responses with the color labels appeared on the screen right after
the mask offset and remained on the display until the response. Participants were instructed to guess if they could not
answer or if they were uncertain about their choice. After each classification response, participants were asked to rate stim-
ulus visibility using the four-point Perceptual Awareness Scale (PAS, Ramsøy & Overgaard, 2004), with the points labeled as
follows: 1. ‘I didn’t see the letters at all’, 2. ‘I only saw a brief glimpse of the letters’, 3. ‘I saw the letters fairly clearly’, and 4. ‘I
saw the letters absolutely clearly’. The scale with labels appeared on the screen right after the identification response and
remained until participants had provided the PAS response.

The entire task consisted of 640 trials (80 trials per condition) divided into 2 blocks, preceded by 12 training trials in
which accuracy feedback was provided after each response. Participants were also informed that they would be given feed-
back on their overall accuracy in the test trials at the end of the task.

2.2.2. Experiment 2
The task used in Experiment 2 was almost identical to the one used in Experiment 1, except for a one major change: For

the low-level processing, a color identity task was used instead of the letter case task, that is, participants were asked
whether the two letters presented on the screen had the same color. The high-level task remained the same as in E1, where
participants classified the letters based on their semantic identity. An example trial is depicted in Fig. 1.

The same stimuli were used in both, low- and high-level tasks of E2. The target letters were presented in 10 different col-
ors (from the Apple palette).1 In both tasks, the letter pairs appeared either in the same color (50% of trials) or in different colors
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Fig. 1. Examples of trials from Experiment 1 (left) and Experiment 2 (right). In both experiments participants were asked to classify pairs of letters as same
or different, based either on their physical identity (low-level task) or a rule (high-level task). In E1, for the low-level task, the letters were paired either as
physically identical (e.g., ‘AA’) or physically different (e.g., ‘Aa’). For the high-level task, the letters were paired as both consonants or both vowels (e.g., ‘AA’
or ‘bb’), or as one consonant and one vowel (e.g., ‘AB’, or ‘ec’). In E2, for the low-level task, participants were asked whether the two letters were the same in
terms of their color. For the high-level, the same task as in E1 was used. Each trial started with a fixation point presented for 1000 ms, followed by the target
letters presented for 16, 32, 48, 64, 80, 96, 112, or 128 ms, and by the mask presented for 200 ms. Next, the response screen was presented, prompting
participants to respond whether the letters were ‘‘the same’’ or ‘‘different’’, and then, to rate the visibility of the letters on the 4-point Perceptual Awareness
Scale (PAS) scale. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

1 The following colors were used: green – RGB 0,255,0; magenta – RGB 255,0,255; black – RGB 0,0,0; blue – RGB 0,0,255; brown – RGB 153,102,51; cyan –
RGB 0,255,255; orange – RGB 255,126,0; purple – RGB 127,0,127; red – RGB 255,0,0 and yellow 255,255,0).
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(the other 50% of trials). Letter color was irrelevant in the case of the high-level task. Each pair consisted either of two lowercase
or two uppercase letters. All other parameters of stimuli, the apparatus, and the procedure remained the same as in Experiment
1.

3. Results

3.1. Classification responses

The average response times (RT) for correct identification responses and the average accuracy for each condition of
Experiment 1 and Experiment 2 are presented in Fig. 2. Response times and accuracy rates were analyzed by means of a
2 LoP (low, high; between subject factor) # 8 Target Duration (16–128 ms; within subject factor) general linear model with
repeated measures. Significant interactions were further analyzed by means of t tests on subsets of the data. Statistical sig-
nificance of Target Duration effects was corrected with the Greenhouse-Geisser or Bonferroni methods.

3.1.1. Response time (RT)
Experiment 1. In the high-level task, overall RT of correct responses was 280 ms longer than in the low-level task (1357 vs

1076 ms, the main effect of LoP: F(1,39) = 9.46, p = .004, gp
2 = .19). The main effect of Target Duration was also significant,

F(7,273) = 72.30, p < .0001, gp
2 = .65. The LoP # Target Duration interaction was not significant, F < 1.0.

Experiment 2. A similar effect of longer RT for correct responses in the high-level task was observed in E2 for each target
duration, except the 16 ms duration, due to a floor effect in this condition (the accuracy was hardly above the chance level,
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Fig. 2. Response time and accuracy in each condition of Experiment 1 (left) and Experiment 2 (right).

4 A. Anzulewicz et al. / Consciousness and Cognition 36 (2015) 1–11



see Fig. 2, and the accuracy results below). The main effects of LoP, F(1,50) = 3.94, p = .05, gp
2 = .07, and Target Duration,

F(7,350) = 24.46, p < .0001, gp
2 = .33, as well as the LoP # Target Duration interaction, F(7,350) = 5.27, p = .005, gp

2 = .09,
were significant. However, when tested without the 16 ms target duration condition, the interaction was no longer signif-
icant, F(6,300) = 1.5, p = .22, gp

2 = .03 (replicating the results of E1), while the main effect of Target Duration remained sig-
nificant, F(6,300) = 23.85, p < .0001, gp

2 = .32, and the main effect of LoP slightly increased (1364 ms in high-level task vs
1124 ms in low-level task), F(1,50) = 5.32, p = .025, gp

2 = .10. To conclude, in RT measurement, the LoP effect was indepen-
dent from Target Duration.

3.1.2. Accuracy
Experiment 1: Both main effects were significant: Target Duration, F(7,273) = 274.15, p < .001, gp

2 = .87, and LoP,
F(1,39) = 13.85, p = .001, gp

2 = .26. The LoP # Target Duration interaction was also significant, F(7,273) = 13.72, p < .001,
gp

2 = .26, reflecting the fact that the high-level task was performed significantly better than the low-level task when target
duration was 32 ms, t(39) = 4.77, p < .006, and 48 ms, t(39) = 3.24, p < .006.

Experiment 2: In the second experiment, both main effects were significant: Target Duration, F(7,350) = 549.83, p < .001,
gp

2 = .91, and LoP, F(1,50) = 4.14, p = .047, gp
2 = .07, along with the LoP # Target Duration interaction, F(7,350) = 25.78,

p < .001, gp
2 = .34. As in E1, the high-level task was performed significantly better than the low-level task when target dura-

tions were short: 16 ms, t(50) = 4.35, p < .006, 32 ms, t(50) = 5.52, p < .006, and 48 ms, t(50) = 3.60, p < .006. However, the
effect was reversed for the two longest target durations, 112 and 128 ms, respectively, t(50) = 3.21, p < .006, and
t(50) = 3.01, p < .006. The LoP effects for the intermediate target durations were not significant, t’s(50) 6 1.9 (for the detailed
results, see: Table A.1 in Appendix A). Summarizing, LoP effects were visible not only in RT’s, but also in accuracy
measurement.

3.1.2.1. Accuracy in the trials with 16 ms target duration. In both experiments, accuracy was lowest in the trials with 16 ms
target duration, thus we tested if it was still better than chance (i.e., 50%). In E1, accuracy was above chance level for both
the low-level task (56%), t(20) = 3.16, p = .005, and the high-level task (62%), t(19) = 7.01, p < .001. The difference between the
levels was significant, t(39) = 2.42, p = .02. In E2, the accuracy in the low-level task was only 2%, but still significantly above
chance level, t(25) = 2.58, p = .016. In the high-level task, accuracy was 57%, t(19) = 7.23, p < .001, and the difference between
the levels was also significant, t(50) = 4.35, p < .001.

3.2. Perceptual Awareness Scale (PAS)

3.2.1. PAS ratings and accuracy
The relationship between accuracy and PAS ratings was analyzed by means of logistic mixed model with LoP (2 levels),

Awareness Rating (4 levels) and Target Duration (8 levels), all possible interactions, and random subject specific intercept.
The PAS ratings were significantly related to accuracy in each condition of both experiments. We found significant slope
effects for target durations and both LoP groups in E1, z’s P 7.07. p’s < .001, and E2, z’s P 7.16. p’s < .001, except the
16 ms target duration condition of the low-level task of E2, z = 1.50; p = .13, which corresponded to very low (close to chance
level) accuracy in this condition. Additionally, we found that in E2 the relation between visibility ratings and accuracy was
stronger in the high-level than in the low-level condition for the shortest durations, i.e., 16 and 32 ms, while the opposite
was observed for the longest duration (128 ms).

3.2.2. PAS rating distribution
The PAS rating distributions (see Fig. 3) showed that in the trials with longer (i.e., optimal for conscious perception) target

durations (P64 ms), participants used the highest PAS point (4) more frequently than in those with shorter durations, indi-
cating clear target visibility in these conditions. Conversely, in the trials with shorter target durations (16, 32, 48 ms), the
middle PAS ratings were more frequently used. As could be expected, in the trials with the shortest target duration
(16 ms), the lowest PAS point (1) was used most frequently, indicating no visibility of the targets. The question of interest
was, however, whether the middle ratings were used more frequently in the low-level task than in the high-level task, as the
LoP hypothesis would predict.

To test this prediction, we calculated a PAS middle rating frequency index, which tallies the frequency of middle ratings (2
and 3) in each condition of both experiments. We assumed that more frequent usage of the middle ratings reflects more
graded visibility (interpreted as the intermediate step between conscious and unconscious perception, cf. Sandberg et al.,
2010; Sergent & Dehaene, 2004; Wierzchoń et al., 2014; Windey et al., 2014), whereas less frequent usage of those ratings
reflects less graded visibility. Next, we tested the differences between the indexes obtained in the low-level and in the
high-level tasks (as depicted in Fig. 4) by means of mixed logistic model with LoP (2 levels) and Target Duration (8 levels),
their interactions, and random subject specific intercept. Table 1 presents LoP effects within each presentation time for both
experiments.

Experiment 1. The overall difference between the extreme and middle ratings for high and low-level tasks was not signif-
icant, but LoP interacted with Target Duration. Crucially, in line with the LoP hypothesis, the middle ratings were used more
frequently when the target duration was 48 ms, z = 2.72, p < .01, and 64 ms, z = 2.06, p < .05. Differences between the high-
and low-level tasks in the other target durations were not significant.
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Experiment 2. When the low-level task was the color discrimination task (instead of the letter case identity task in E1),
more pronounced effects of LoP were obtained. The middle ratings were, in general, used more frequently in the
low-level task than in the high-level task, z = 6.56, p < .001, while being most pronounced for the 32 ms, z = 9.08, p < .001,
and 48 ms, z = 8.35, p < .001, durations, which corresponds to the results of E1.
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Fig. 3. PAS rating distributions in the low- and high-level tasks in Experiment 1 (left panel) and Experiment 2 (right panel).
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In order to examine whether the above effects were not artifacts produced by differences in accuracy between conditions,
we performed a similar logistic mixed model analysis with LoP and Target Duration, while controlling for accuracy. In both
experiments, the overall pattern of results was the same as in the first analyses – all the effects remained significant (E1:
z’s P 1.77, p’s 6 .07; E2: z’s P 3.42, p’s < .001), clearly demonstrating that the differences between the low- and high-level
tasks in PAS rating distributions were not caused by differences in accuracy.

To summarize, in both experiments the PAS rating distributions were in line with the LoP hypothesis.

4. Discussion

4.1. Levels of processing in the objective measures of performance

Does gradualness of the transition from unconscious to conscious vision depend on the level of processing? Here, we
tested the LoP hypothesis using two variants of a task, which was designed specifically to differentiate between low and high
levels of processing. The two experiments demonstrated very similar effects of LoP in terms of response times. Namely, in the
high-level tasks, RT were longer than in the low-level tasks, revealing the classic LoP effect (Posner & Mitchell, 1967). We
may therefore assume that the high-level task imposed processing of the stimuli at a higher, semantic level, or, using
Craik and Lockhart’s metaphor, at a deeper level of the cognitive hierarchy. It is worth mentioning that such an interpretation
is also in line with several neuroimaging studies, which showed correlations between levels of processing imposed by a task
demands and the observed level of cortical activation (e.g., Kapur et al., 1994; Otten & Rugg, 2001; Petersen et al., 1988).

The LoP effect on RT was independent of target duration. However, the accuracy analysis showed an interesting interac-
tion between LoP and target duration. When stimulus duration was long enough to enable clear perception of the targets
(i.e., 122 and 128 ms), performance tended to be better in the low-level task than in the more demanding high-level task,
matching the RT results.2 However, when target duration was shorter, that is, when it was suboptimal for conscious perception
(16, 32, and 48 ms), accuracy was better in the high-level tasks, while RT was still longer in these conditions when compared to
the low-level task. The latter result seems counterintuitive, as more demanding high-level tasks should be performed with
lower accuracy than easier, low-level tasks, especially in conditions that involve short presentation durations. However, it is
possible that the longer RT in the high-level task provided more time for the accumulation of sensory evidence, thereby con-
tributing to better accuracy.3 The higher accuracy in the high-level tasks with suboptimal target durations might also be inter-
preted as a speed-accuracy trade-off because being more conservative in the high-level tasks would result in longer RT and
higher accuracy. In this case, however, the RT differences between the two LoP conditions at the target durations that are opti-
mal for conscious perception should no longer be observed, as there is rather no reason to expect such a trade-off when the
target is clearly visible. Also, in the case of a speed-accuracy trade-off, RT effects should interact with increasing task difficulty
(i.e., the more difficult the task, the slower the responses, to maintain high accuracy with increasing difficulty). However, the
LoP effects in RT were independent of target durations, which suggests that the interaction between target duration and LoP
in accuracy may be relatively independent from the LoP effect in RT. In other words, the LoP effect may have different sources.

An alternative explanation of higher accuracy in high LoP condition for short stimulus durations would be that top-down
processing makes it possible to partially overcome the shortage of perceptual information stemming from suboptimal

Table 1
LoP effects on frequencies of PAS middle ratings usage, analyzed by means of mixed logistic regression model with LoP (2 levels) and Target Duration (8 levels)
as factors. To improve readability, LoP was nested within target durations.

Experiment 1 Experiment 2
N = 41, # observations: 26,221 N = 50, # observations: 32,553

Estimate SE z p Estimate SE z p

Effect of LoP on middle ratings probability
16 ms $.12 0.38 $.31 .76 1.00 .12 7.69 <.001⁄⁄⁄

32 ms .30 0.39 .79 .43 .93 .13 7.07 <.001⁄⁄⁄

48 ms 1.05 0.38 2.72 <.01⁄⁄ 1.20 .13 9.08 <.001⁄⁄⁄

64 ms .79 0.39 2.06 <.05⁄ 1.08 .13 8.35 <.001⁄⁄⁄

80 ms .31 0.39 .81 .42 .74 .13 5.73 <.001⁄⁄⁄

96 ms .11 0.39 .29 .77 .41 .13 3.12 <.01⁄⁄

112 ms $.07 0.39 $.18 .86 .38 .13 2.85 <.01⁄⁄

128 ms $.37 0.39 $.94 .35 .27 .13 2.02 <.05⁄

Likelihood ratio v2(16) = 4563, p < .001 Likelihood ratio v2(16) = 3217, p < .001
⁄p < .05 ⁄p < .05
⁄⁄p < .01 ⁄⁄p < .01
⁄⁄⁄p < .001 ⁄⁄⁄p < .001

2 Note that this LoP effect for accuracy was observed only in E2, due to a ceiling effect in E1.
3 It is worth noting that higher accuracy for the high-level task than the low-level task is in line with the results obtained by Windey et al. (2014).
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stimulus duration.4 Evidence from human single-cell recordings and computational studies suggests that high-level, semantic
representations are sparse, abstract, and invariant, that is, largely independent from the exact form of physical stimulation
(Quiroga, Kreiman, Koch, & Fried, 2008; Waydo & Koch, 2008; see also the predictive coding theory, e.g., Panichello, Cheung,
& Bar, 2012). Thus, we may speculate that semantic or more abstract representations might be built in a more top-down man-
ner, thereby requiring less amount of bottom-up sensory information. If so, the lack of precise perceptual evidence about stimuli
would be less problematic or less disturbing when the tasks require more abstract, semantic processing of stimuli (but such
processing might still take more time, than the low-level tasks, which is exactly what we observed).

To summarize, both experiments have shown the expected LoP effects, which provides a solid ground for the interpreta-
tion of differences in the gradual nature of conscious perception in terms of depth of processing, as proposed by Windey et al.
(2013). The study also revealed that the effects of LoP on accuracy may depend on whether the presentation of stimuli is
optimal (sufficiently long) or suboptimal (too short) for conscious perception.

4.2. Relationship between accuracy and stimulus visibility

The correlation between accuracy and stimulus visibility was high in both experiments, as expected (cf. Wierzchoń et al.,
2014). Additionally, in the second experiment, we found that when stimuli were presented very briefly (16 and 32 ms of tar-
get durations), accuracy proved to be increasing more gradually in the low-level task than in the high-level task. This result
replicates the findings of Windey et al. (2014), and is congruent with the LoP hypothesis. The inverse effect was observed for
the longest duration (128 ms) of E2. Here, accuracy was increasing more gradually in the high-level than the low-level task,
however, it seems that this effect might arise due to a ceiling effect in accuracy. It is worth noting that in the study by
Windey et al. (2013) accuracy did not simply increase faster in the high-level task. In fact, it increased more slowly for short
stimulus durations and faster for long stimulus durations. This result has not been replicated in the experiments discussed in
this paper. This discrepancy might arise from the fact that the processing time varied across these studies, i.e., in the exper-
iments presented in this paper clear differences in RT between the low- and high-level conditions were observed, while in
the paper by Windey et al. (2013) no LoP effects in RT were reported. As we suggested in the previous section (4.1), the coun-
terintuitive effect of higher accuracy in the high LoP condition might be due to a speed-accuracy trade-off.

4.3. Stimulus visibility and the level of processing hypothesis

According to the LoP hypothesis, information processing at a lower level is associated with a more graded transition from
unconscious to conscious perception than processing at a higher level (Windey & Cleeremans, 2015; Windey et al., 2013).
Therefore, we expected a higher frequency of the PAS middle ratings usage in the low-level task than in the high-level task.
The results of Experiment 1 show that when target duration was short (48 and 64 ms – conditions with moderate levels of
accuracy), the middle PAS ratings were used more often in the low-level task than in the corresponding conditions of the
high-level task. This result supports the idea that the transition between unconscious and conscious processing is more grad-
ual when the task involves a low-level processing. The second experiment showed similar, but more pronounced effects of
LoP on stimulus visibility. The middle PAS ratings were again used more frequently in the low-level task than in the
high-level task, and the effect was significant for all target durations. Still, the effect was most evident around the threshold
for conscious perception (i.e., for 48 and 64 ms target durations), and slightly decreased when the stimuli were presented
either with short (<48 ms) or long durations (>64 ms), congruently with the results of Experiment 1. This interaction with
target duration seems to be a result of the floor and ceiling effects on target visibility, which appear to override more subtle
effects of LoP on PAS ratings.

We can speculate on the underlying neural mechanism that drives the more gradual transition during low-level process-
ing. Previous studies have found correlations between conscious perception of low-level visual stimuli and early recurrent
processing in visual cortex (Boehler, Schoenfeld, Heinze, & Hopf, 2008; Fahrenfort, Scholte, & Lamme, 2008). These recurrent
interactions are proposed to be associated with conscious visual experience through processes such as figure-ground segre-
gation and perceptual organization (Koivisto & Silvanto, 2011; Lamme, 2010). Future neuroimaging studies could specifically
target posterior brain regions to investigate whether the gradual transition from unconscious to conscious processing for
low-level stimuli and tasks (as presented in this paper) is associated with or caused by a gradual increase in recurrent pro-
cessing between early visual regions.

4.4. Alternative interpretations

While the present results are in line with the LoP hypothesis, they nevertheless do not completely make it possible to rule
out alternative interpretations of the differences in visibility of stimuli in the low- and high-level tasks. One such alternative
explanation would be that processing of information at higher levels inherently imposes a longer processing time (reflecting
in longer RT), and thereby enables more time for the accumulation of evidence necessary to elaborate a clear, detailed con-
scious representation. In other words, in the low-level task, representation at the very moment of responding involves a

4 This does not imply that participants were not aware of the stimuli.
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smaller amount of evidence because the response is given after a shorter processing time than in the high-level task.
Nevertheless, it is also plausible that these two aspects, level and duration of processing, are just two sides of the same coin.
Namely, imposing processing of information at higher levels might always enforce longer time of processing (cf. the mental
chronometry argument presented in the Introduction). If this is the case, then the LoP hypothesis might be correct exactly
because higher levels of processing tend to be systematically associated with longer processing time.

Finally, it seems worth mentioning that in the high-level tasks the frequency of the middle ratings was still relatively
high. This seems to suggest that subjective judgments about conscious experience might be generally graded (cf.
Nieuwenhuis & de Kleijn, 2011; Overgaard et al., 2006), rather than dichotomous (as it was suggested by Sergent &
Dehaene, 2004).5 Note that the frequency of the lowest PAS ratings was very low in all conditions (presumably reflecting con-
scious processing of stimuli). Thus, the effect of LoP appears to originate mainly from the frequency of the middle (2 and 3) and
the highest (4) ratings. It might be that what differs between the LoP conditions is the threshold at which participants begin to
use the highest rating. We might thus speculate why we observe such systematic differences in rating frequencies. It seems
plausible that this might be related to the diversity of the mechanisms underlying subjective reports. Particularly, the system-
atic differences in rating frequencies might be related to two, partially independent mechanisms. The first one (e.g., the accu-
mulation of evidence, as proposed above) might influence the gradedness of access to the first-order representation (access to
the representation of stimuli in the cognitive system, see: hierarchical models of consciousness, Lau & Rosenthal, 2011). The
second mechanism might be related to participants’ subjective judgments of that first-order accessibility. Our subjective judg-
ments usually operate on a metacognitive level of representations (see e.g., Seth, 2008). It thus seems possible that the effects of
LoP are in fact restricted to the first-order representation, and then higher-order judgments provide a more complex, and thus
more gradual interpretation of a dichotomous access to the first-order representation. Hence, the real dichotomy (if it indeed
exists) would be observable only at the first-order level, whereas the subjective judgments (generated by higher-order repre-
sentation) would always be gradual. However, we still observed significantly more graded ratings in the low-level task than in

Table A.1
Results of logistic mixed models with LoP, Awareness Rating, and Target Duration. Separate intercepts and slopes parameterization were used to improve the
readability of regression coefficients. Part A of the table shows the scale slopes for different target durations separately for the low- and high-level tasks. Part B
of the table shows the interactions between level and slopes within time. To improve readability, only the slope estimates are shown.

Experiment 1 Experiment 2
N = 41, # observations: 26,166 N = 50, # observations: 32,398

Estimate SE z p Estimate SE z p

A. PAS rating slopes within conditions
LoP low, 16 ms: rating .58 .07 8.15 <.001⁄⁄⁄ .09 .06 1.50 .13
LoP low, 32 ms: rating .97 .08 12.19 <.001⁄⁄⁄ .42 .06 7.21 <.001⁄⁄⁄

LoP low, 48 ms: rating 1.23 .11 11.63 <.001⁄⁄⁄ .87 .07 11.81 <.001⁄⁄⁄

LoP low, 64 ms: rating 2.02 .18 11.25 <.001⁄⁄⁄ 1.15 .10 11.18 <.001⁄⁄⁄

LoP low, 80 ms: rating 2.08 .19 10.91 <.001⁄⁄⁄ 1.62 .15 11.02 <.001⁄⁄⁄

LoP low, 96 ms: rating 1.85 .18 10.41 <.001⁄⁄⁄ 1.43 .14 10.07 <.001⁄⁄⁄

LoP low, 112 ms: rating 1.63 .19 8.43 <.001⁄⁄⁄ 1.76 .16 10.70 <.001⁄⁄⁄

LoP low, 128 ms: rating 2.14 .19 11.04 <.001⁄⁄⁄ 2.22 .19 11.41 <.001⁄⁄⁄

LoP high, 16 ms: rating .54 .08 7.15 <.001⁄⁄⁄ .40 .06 7.16 <.001⁄⁄⁄

LoP high, 32 ms: rating 1.07 .11 9.73 <.001⁄⁄⁄ .83 .06 13.06 <.001⁄⁄⁄

LoP high, 48 ms: rating 1.46 .16 9.19 <.001⁄⁄⁄ .98 .09 11.44 <.001⁄⁄⁄

LoP high, 64 ms: rating 1.79 .18 10.04 <.001⁄⁄⁄ 1.43 .11 12.60 <.001⁄⁄⁄

LoP high, 80 ms: rating 1.63 .19 8.48 <.001⁄⁄⁄ 1.38 .13 10.97 <.001⁄⁄⁄

LoP high, 96 ms: rating 1.55 .17 9.10 <.001⁄⁄⁄ 1.26 .12 10.77 <.001⁄⁄⁄

LoP high, 112 ms: rating 1.64 .23 7.07 <.001⁄⁄⁄ 1.53 .12 12.414 <.001⁄⁄⁄

LoP high, 128 ms: rating 1.79 .20 8.87 <.001⁄⁄⁄ 1.47 .13 11.665 <.001⁄⁄⁄

B. PAS ratings slopes # LoP within time conditions
LoP # ratings at 16 ms .04 .10 .35 .72 $.31 .08 $3.791 <.001⁄⁄⁄

LoP # ratings at 32 ms $.11 .14 $.78 .44 $.42 .09 $4.850 <.001⁄⁄⁄

LoP # ratings at 48 ms $.23 .19 $1.22 .22 $.11 .11 $0.940 .35
LoP # ratings at 64 ms .23 .25 .90 .37 $.28 .15 $1.843 .07
LoP # ratings at 80 ms .45 .27 1.67 .09 .24 .19 1.238 .22
LoP # ratings at 96 ms .30 .25 1.21 .23 0.17 .18 0.906 .36
LoP # ratings at 112 ms $.01 .30 $.04 .96 0.23 .21 1.105 .27
LoP # ratings at 128 ms .35 .28 1.27 .21 0.74 .23 3.201 <.01⁄⁄⁄

Likelihood ratio v2 (32) = 5530, p < .001 Likelihood ratio v2(32) = 7216, p < .001
⁄ p < .05 ⁄p < .05
⁄⁄ p < .01 ⁄⁄ p < .01
⁄⁄⁄ p < .001 ⁄⁄⁄ p < .001

5 Recently, Nieuwenhuis and de Kleijn (2011) have reported a gradual pattern of awareness ratings even in tasks that were very similar to the ones used in
Sergent and Dehaene’s (2004) study (i.e., rapid serial visual presentation tasks, with words or letters as stimuli). This result suggests that some factors, other
than LoP, may affect the gradualness of conscious perception as well.
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the high-level task. Thus, it seems that differences in first-order access may be reflected to some extent in the higher-order sub-
jective judgments.

4.5. Conclusion

In this paper, we provide further evidence suggesting that the level of processing affects the transition from unconscious
to conscious perception. The two experiments demonstrated that subjective visibility of stimuli is rated as clear more fre-
quently in the high-level task than in the low-level task, indicating that the transition from unconscious to conscious per-
ception might be less gradual when a task imposes processing of stimuli at higher (or deeper) levels of the cognitive
system. To conclude, the results are fully in agreement with the LoP hypothesis (Windey et al., 2013), although some alter-
native interpretations still remain possible.
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